| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sowlin | Unicode version | ||
| Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| sowlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4054 |
. . . . 5
| |
| 2 | breq1 4054 |
. . . . . 6
| |
| 3 | 2 | orbi1d 793 |
. . . . 5
|
| 4 | 1, 3 | imbi12d 234 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | breq2 4055 |
. . . . 5
| |
| 7 | breq2 4055 |
. . . . . 6
| |
| 8 | 7 | orbi2d 792 |
. . . . 5
|
| 9 | 6, 8 | imbi12d 234 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | breq2 4055 |
. . . . . 6
| |
| 12 | breq1 4054 |
. . . . . 6
| |
| 13 | 11, 12 | orbi12d 795 |
. . . . 5
|
| 14 | 13 | imbi2d 230 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | df-iso 4352 |
. . . . 5
| |
| 17 | 3anass 985 |
. . . . . . 7
| |
| 18 | rsp 2554 |
. . . . . . . . 9
| |
| 19 | rsp2 2557 |
. . . . . . . . 9
| |
| 20 | 18, 19 | syl6 33 |
. . . . . . . 8
|
| 21 | 20 | impd 254 |
. . . . . . 7
|
| 22 | 17, 21 | biimtrid 152 |
. . . . . 6
|
| 23 | 22 | adantl 277 |
. . . . 5
|
| 24 | 16, 23 | sylbi 121 |
. . . 4
|
| 25 | 24 | com12 30 |
. . 3
|
| 26 | 5, 10, 15, 25 | vtocl3ga 2845 |
. 2
|
| 27 | 26 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-iso 4352 |
| This theorem is referenced by: sotri2 5089 sotri3 5090 suplub2ti 7118 addextpr 7754 cauappcvgprlemloc 7785 caucvgprlemloc 7808 caucvgprprlemloc 7836 caucvgprprlemaddq 7841 ltsosr 7897 suplocsrlem 7941 axpre-ltwlin 8016 xrlelttr 9948 xrltletr 9949 xrletr 9950 xrmaxiflemlub 11634 |
| Copyright terms: Public domain | W3C validator |