| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sowlin | Unicode version | ||
| Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.) |
| Ref | Expression |
|---|---|
| sowlin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4085 |
. . . . 5
| |
| 2 | breq1 4085 |
. . . . . 6
| |
| 3 | 2 | orbi1d 796 |
. . . . 5
|
| 4 | 1, 3 | imbi12d 234 |
. . . 4
|
| 5 | 4 | imbi2d 230 |
. . 3
|
| 6 | breq2 4086 |
. . . . 5
| |
| 7 | breq2 4086 |
. . . . . 6
| |
| 8 | 7 | orbi2d 795 |
. . . . 5
|
| 9 | 6, 8 | imbi12d 234 |
. . . 4
|
| 10 | 9 | imbi2d 230 |
. . 3
|
| 11 | breq2 4086 |
. . . . . 6
| |
| 12 | breq1 4085 |
. . . . . 6
| |
| 13 | 11, 12 | orbi12d 798 |
. . . . 5
|
| 14 | 13 | imbi2d 230 |
. . . 4
|
| 15 | 14 | imbi2d 230 |
. . 3
|
| 16 | df-iso 4387 |
. . . . 5
| |
| 17 | 3anass 1006 |
. . . . . . 7
| |
| 18 | rsp 2577 |
. . . . . . . . 9
| |
| 19 | rsp2 2580 |
. . . . . . . . 9
| |
| 20 | 18, 19 | syl6 33 |
. . . . . . . 8
|
| 21 | 20 | impd 254 |
. . . . . . 7
|
| 22 | 17, 21 | biimtrid 152 |
. . . . . 6
|
| 23 | 22 | adantl 277 |
. . . . 5
|
| 24 | 16, 23 | sylbi 121 |
. . . 4
|
| 25 | 24 | com12 30 |
. . 3
|
| 26 | 5, 10, 15, 25 | vtocl3ga 2871 |
. 2
|
| 27 | 26 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-iso 4387 |
| This theorem is referenced by: sotri2 5125 sotri3 5126 suplub2ti 7164 addextpr 7804 cauappcvgprlemloc 7835 caucvgprlemloc 7858 caucvgprprlemloc 7886 caucvgprprlemaddq 7891 ltsosr 7947 suplocsrlem 7991 axpre-ltwlin 8066 xrlelttr 9998 xrltletr 9999 xrletr 10000 xrmaxiflemlub 11754 |
| Copyright terms: Public domain | W3C validator |