Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sowlin | Unicode version |
Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.) |
Ref | Expression |
---|---|
sowlin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . . 5 | |
2 | breq1 3985 | . . . . . 6 | |
3 | 2 | orbi1d 781 | . . . . 5 |
4 | 1, 3 | imbi12d 233 | . . . 4 |
5 | 4 | imbi2d 229 | . . 3 |
6 | breq2 3986 | . . . . 5 | |
7 | breq2 3986 | . . . . . 6 | |
8 | 7 | orbi2d 780 | . . . . 5 |
9 | 6, 8 | imbi12d 233 | . . . 4 |
10 | 9 | imbi2d 229 | . . 3 |
11 | breq2 3986 | . . . . . 6 | |
12 | breq1 3985 | . . . . . 6 | |
13 | 11, 12 | orbi12d 783 | . . . . 5 |
14 | 13 | imbi2d 229 | . . . 4 |
15 | 14 | imbi2d 229 | . . 3 |
16 | df-iso 4275 | . . . . 5 | |
17 | 3anass 972 | . . . . . . 7 | |
18 | rsp 2513 | . . . . . . . . 9 | |
19 | rsp2 2516 | . . . . . . . . 9 | |
20 | 18, 19 | syl6 33 | . . . . . . . 8 |
21 | 20 | impd 252 | . . . . . . 7 |
22 | 17, 21 | syl5bi 151 | . . . . . 6 |
23 | 22 | adantl 275 | . . . . 5 |
24 | 16, 23 | sylbi 120 | . . . 4 |
25 | 24 | com12 30 | . . 3 |
26 | 5, 10, 15, 25 | vtocl3ga 2796 | . 2 |
27 | 26 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 wral 2444 class class class wbr 3982 wpo 4272 wor 4273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-iso 4275 |
This theorem is referenced by: sotri2 5001 sotri3 5002 suplub2ti 6966 addextpr 7562 cauappcvgprlemloc 7593 caucvgprlemloc 7616 caucvgprprlemloc 7644 caucvgprprlemaddq 7649 ltsosr 7705 suplocsrlem 7749 axpre-ltwlin 7824 xrlelttr 9742 xrltletr 9743 xrletr 9744 xrmaxiflemlub 11189 |
Copyright terms: Public domain | W3C validator |