| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sowlin | Unicode version | ||
| Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.) | 
| Ref | Expression | 
|---|---|
| sowlin | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq1 4036 | 
. . . . 5
 | |
| 2 | breq1 4036 | 
. . . . . 6
 | |
| 3 | 2 | orbi1d 792 | 
. . . . 5
 | 
| 4 | 1, 3 | imbi12d 234 | 
. . . 4
 | 
| 5 | 4 | imbi2d 230 | 
. . 3
 | 
| 6 | breq2 4037 | 
. . . . 5
 | |
| 7 | breq2 4037 | 
. . . . . 6
 | |
| 8 | 7 | orbi2d 791 | 
. . . . 5
 | 
| 9 | 6, 8 | imbi12d 234 | 
. . . 4
 | 
| 10 | 9 | imbi2d 230 | 
. . 3
 | 
| 11 | breq2 4037 | 
. . . . . 6
 | |
| 12 | breq1 4036 | 
. . . . . 6
 | |
| 13 | 11, 12 | orbi12d 794 | 
. . . . 5
 | 
| 14 | 13 | imbi2d 230 | 
. . . 4
 | 
| 15 | 14 | imbi2d 230 | 
. . 3
 | 
| 16 | df-iso 4332 | 
. . . . 5
 | |
| 17 | 3anass 984 | 
. . . . . . 7
 | |
| 18 | rsp 2544 | 
. . . . . . . . 9
 | |
| 19 | rsp2 2547 | 
. . . . . . . . 9
 | |
| 20 | 18, 19 | syl6 33 | 
. . . . . . . 8
 | 
| 21 | 20 | impd 254 | 
. . . . . . 7
 | 
| 22 | 17, 21 | biimtrid 152 | 
. . . . . 6
 | 
| 23 | 22 | adantl 277 | 
. . . . 5
 | 
| 24 | 16, 23 | sylbi 121 | 
. . . 4
 | 
| 25 | 24 | com12 30 | 
. . 3
 | 
| 26 | 5, 10, 15, 25 | vtocl3ga 2834 | 
. 2
 | 
| 27 | 26 | impcom 125 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-iso 4332 | 
| This theorem is referenced by: sotri2 5067 sotri3 5068 suplub2ti 7067 addextpr 7688 cauappcvgprlemloc 7719 caucvgprlemloc 7742 caucvgprprlemloc 7770 caucvgprprlemaddq 7775 ltsosr 7831 suplocsrlem 7875 axpre-ltwlin 7950 xrlelttr 9881 xrltletr 9882 xrletr 9883 xrmaxiflemlub 11413 | 
| Copyright terms: Public domain | W3C validator |