ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sowlin Unicode version

Theorem sowlin 4212
Description: A strict order relation satisfies weak linearity. (Contributed by Jim Kingdon, 6-Oct-2018.)
Assertion
Ref Expression
sowlin  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B R C  ->  ( B R D  \/  D R C ) ) )

Proof of Theorem sowlin
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3902 . . . . 5  |-  ( x  =  B  ->  (
x R y  <->  B R
y ) )
2 breq1 3902 . . . . . 6  |-  ( x  =  B  ->  (
x R z  <->  B R
z ) )
32orbi1d 765 . . . . 5  |-  ( x  =  B  ->  (
( x R z  \/  z R y )  <->  ( B R z  \/  z R y ) ) )
41, 3imbi12d 233 . . . 4  |-  ( x  =  B  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( B R y  ->  ( B R z  \/  z R y ) ) ) )
54imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( R  Or  A  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )  <-> 
( R  Or  A  ->  ( B R y  ->  ( B R z  \/  z R y ) ) ) ) )
6 breq2 3903 . . . . 5  |-  ( y  =  C  ->  ( B R y  <->  B R C ) )
7 breq2 3903 . . . . . 6  |-  ( y  =  C  ->  (
z R y  <->  z R C ) )
87orbi2d 764 . . . . 5  |-  ( y  =  C  ->  (
( B R z  \/  z R y )  <->  ( B R z  \/  z R C ) ) )
96, 8imbi12d 233 . . . 4  |-  ( y  =  C  ->  (
( B R y  ->  ( B R z  \/  z R y ) )  <->  ( B R C  ->  ( B R z  \/  z R C ) ) ) )
109imbi2d 229 . . 3  |-  ( y  =  C  ->  (
( R  Or  A  ->  ( B R y  ->  ( B R z  \/  z R y ) ) )  <-> 
( R  Or  A  ->  ( B R C  ->  ( B R z  \/  z R C ) ) ) ) )
11 breq2 3903 . . . . . 6  |-  ( z  =  D  ->  ( B R z  <->  B R D ) )
12 breq1 3902 . . . . . 6  |-  ( z  =  D  ->  (
z R C  <->  D R C ) )
1311, 12orbi12d 767 . . . . 5  |-  ( z  =  D  ->  (
( B R z  \/  z R C )  <->  ( B R D  \/  D R C ) ) )
1413imbi2d 229 . . . 4  |-  ( z  =  D  ->  (
( B R C  ->  ( B R z  \/  z R C ) )  <->  ( B R C  ->  ( B R D  \/  D R C ) ) ) )
1514imbi2d 229 . . 3  |-  ( z  =  D  ->  (
( R  Or  A  ->  ( B R C  ->  ( B R z  \/  z R C ) ) )  <-> 
( R  Or  A  ->  ( B R C  ->  ( B R D  \/  D R C ) ) ) ) )
16 df-iso 4189 . . . . 5  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
17 3anass 951 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  <->  ( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) ) )
18 rsp 2457 . . . . . . . . 9  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
x  e.  A  ->  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
19 rsp2 2459 . . . . . . . . 9  |-  ( A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2018, 19syl6 33 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
x  e.  A  -> 
( ( y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) ) )
2120impd 252 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( x  e.  A  /\  ( y  e.  A  /\  z  e.  A
) )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
2217, 21syl5bi 151 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) )  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2322adantl 275 . . . . 5  |-  ( ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  (
x R y  -> 
( x R z  \/  z R y ) ) )  -> 
( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
x R y  -> 
( x R z  \/  z R y ) ) ) )
2416, 23sylbi 120 . . . 4  |-  ( R  Or  A  ->  (
( x  e.  A  /\  y  e.  A  /\  z  e.  A
)  ->  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
2524com12 30 . . 3  |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  ( R  Or  A  ->  ( x R y  ->  ( x R z  \/  z R y ) ) ) )
265, 10, 15, 25vtocl3ga 2730 . 2  |-  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A )  ->  ( R  Or  A  ->  ( B R C  ->  ( B R D  \/  D R C ) ) ) )
2726impcom 124 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A
) )  ->  ( B R C  ->  ( B R D  \/  D R C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 682    /\ w3a 947    = wceq 1316    e. wcel 1465   A.wral 2393   class class class wbr 3899    Po wpo 4186    Or wor 4187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-v 2662  df-un 3045  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-iso 4189
This theorem is referenced by:  sotri2  4906  sotri3  4907  suplub2ti  6856  addextpr  7397  cauappcvgprlemloc  7428  caucvgprlemloc  7451  caucvgprprlemloc  7479  caucvgprprlemaddq  7484  ltsosr  7540  suplocsrlem  7584  axpre-ltwlin  7659  xrlelttr  9557  xrltletr  9558  xrletr  9559  xrmaxiflemlub  10985
  Copyright terms: Public domain W3C validator