ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime Unicode version

Theorem rspcime 2884
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1  |-  ( (
ph  /\  x  =  A )  ->  ps )
rspcime.2  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rspcime  |-  ( ph  ->  E. x  e.  B  ps )
Distinct variable groups:    ph, x    x, B    x, A
Allowed substitution hint:    ps( x)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2  |-  ( ph  ->  A  e.  B )
2 rspcime.1 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ps )
3 simpl 109 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ph )
42, 32thd 175 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<-> 
ph ) )
5 id 19 . 2  |-  ( ph  ->  ph )
61, 4, 5rspcedvd 2883 1  |-  ( ph  ->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-v 2774
This theorem is referenced by:  elrnmptdv  4933
  Copyright terms: Public domain W3C validator