ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime Unicode version

Theorem rspcime 2820
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1  |-  ( (
ph  /\  x  =  A )  ->  ps )
rspcime.2  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rspcime  |-  ( ph  ->  E. x  e.  B  ps )
Distinct variable groups:    ph, x    x, B    x, A
Allowed substitution hint:    ps( x)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2  |-  ( ph  ->  A  e.  B )
2 rspcime.1 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ps )
3 simpl 108 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ph )
42, 32thd 174 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<-> 
ph ) )
5 id 19 . 2  |-  ( ph  ->  ph )
61, 4, 5rspcedvd 2819 1  |-  ( ph  ->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   E.wrex 2433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-rex 2438  df-v 2711
This theorem is referenced by:  elrnmptdv  4833
  Copyright terms: Public domain W3C validator