ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime Unicode version

Theorem rspcime 2875
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1  |-  ( (
ph  /\  x  =  A )  ->  ps )
rspcime.2  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
rspcime  |-  ( ph  ->  E. x  e.  B  ps )
Distinct variable groups:    ph, x    x, B    x, A
Allowed substitution hint:    ps( x)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2  |-  ( ph  ->  A  e.  B )
2 rspcime.1 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ps )
3 simpl 109 . . 3  |-  ( (
ph  /\  x  =  A )  ->  ph )
42, 32thd 175 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<-> 
ph ) )
5 id 19 . 2  |-  ( ph  ->  ph )
61, 4, 5rspcedvd 2874 1  |-  ( ph  ->  E. x  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765
This theorem is referenced by:  elrnmptdv  4920
  Copyright terms: Public domain W3C validator