ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptdv Unicode version

Theorem elrnmptdv 4954
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1  |-  F  =  ( x  e.  A  |->  B )
elrnmptdv.2  |-  ( ph  ->  C  e.  A )
elrnmptdv.3  |-  ( ph  ->  D  e.  V )
elrnmptdv.4  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
Assertion
Ref Expression
elrnmptdv  |-  ( ph  ->  D  e.  ran  F
)
Distinct variable groups:    x, D    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
2 elrnmptdv.2 . . 3  |-  ( ph  ->  C  e.  A )
31, 2rspcime 2894 . 2  |-  ( ph  ->  E. x  e.  A  D  =  B )
4 elrnmptdv.3 . . 3  |-  ( ph  ->  D  e.  V )
5 elrnmptdv.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
65elrnmpt 4949 . . 3  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B ) )
74, 6syl 14 . 2  |-  ( ph  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B )
)
83, 7mpbird 167 1  |-  ( ph  ->  D  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1375    e. wcel 2180   E.wrex 2489    |-> cmpt 4124   ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-mpt 4126  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator