ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptdv Unicode version

Theorem elrnmptdv 4865
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1  |-  F  =  ( x  e.  A  |->  B )
elrnmptdv.2  |-  ( ph  ->  C  e.  A )
elrnmptdv.3  |-  ( ph  ->  D  e.  V )
elrnmptdv.4  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
Assertion
Ref Expression
elrnmptdv  |-  ( ph  ->  D  e.  ran  F
)
Distinct variable groups:    x, D    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
2 elrnmptdv.2 . . 3  |-  ( ph  ->  C  e.  A )
31, 2rspcime 2841 . 2  |-  ( ph  ->  E. x  e.  A  D  =  B )
4 elrnmptdv.3 . . 3  |-  ( ph  ->  D  e.  V )
5 elrnmptdv.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
65elrnmpt 4860 . . 3  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B ) )
74, 6syl 14 . 2  |-  ( ph  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B )
)
83, 7mpbird 166 1  |-  ( ph  ->  D  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449    |-> cmpt 4050   ran crn 4612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-mpt 4052  df-cnv 4619  df-dm 4621  df-rn 4622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator