| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrnmptdv | Unicode version | ||
| Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| Ref | Expression |
|---|---|
| elrnmptdv.1 |
|
| elrnmptdv.2 |
|
| elrnmptdv.3 |
|
| elrnmptdv.4 |
|
| Ref | Expression |
|---|---|
| elrnmptdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrnmptdv.4 |
. . 3
| |
| 2 | elrnmptdv.2 |
. . 3
| |
| 3 | 1, 2 | rspcime 2894 |
. 2
|
| 4 | elrnmptdv.3 |
. . 3
| |
| 5 | elrnmptdv.1 |
. . . 4
| |
| 6 | 5 | elrnmpt 4949 |
. . 3
|
| 7 | 4, 6 | syl 14 |
. 2
|
| 8 | 3, 7 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-mpt 4126 df-cnv 4704 df-dm 4706 df-rn 4707 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |