ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptdv Unicode version

Theorem elrnmptdv 4910
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1  |-  F  =  ( x  e.  A  |->  B )
elrnmptdv.2  |-  ( ph  ->  C  e.  A )
elrnmptdv.3  |-  ( ph  ->  D  e.  V )
elrnmptdv.4  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
Assertion
Ref Expression
elrnmptdv  |-  ( ph  ->  D  e.  ran  F
)
Distinct variable groups:    x, D    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
2 elrnmptdv.2 . . 3  |-  ( ph  ->  C  e.  A )
31, 2rspcime 2871 . 2  |-  ( ph  ->  E. x  e.  A  D  =  B )
4 elrnmptdv.3 . . 3  |-  ( ph  ->  D  e.  V )
5 elrnmptdv.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
65elrnmpt 4905 . . 3  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B ) )
74, 6syl 14 . 2  |-  ( ph  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B )
)
83, 7mpbird 167 1  |-  ( ph  ->  D  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    |-> cmpt 4090   ran crn 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-mpt 4092  df-cnv 4663  df-dm 4665  df-rn 4666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator