ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrnmptdv Unicode version

Theorem elrnmptdv 4858
Description: Elementhood in the range of a function in maps-to notation, deduction form. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
elrnmptdv.1  |-  F  =  ( x  e.  A  |->  B )
elrnmptdv.2  |-  ( ph  ->  C  e.  A )
elrnmptdv.3  |-  ( ph  ->  D  e.  V )
elrnmptdv.4  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
Assertion
Ref Expression
elrnmptdv  |-  ( ph  ->  D  e.  ran  F
)
Distinct variable groups:    x, D    x, A    x, C    ph, x
Allowed substitution hints:    B( x)    F( x)    V( x)

Proof of Theorem elrnmptdv
StepHypRef Expression
1 elrnmptdv.4 . . 3  |-  ( (
ph  /\  x  =  C )  ->  D  =  B )
2 elrnmptdv.2 . . 3  |-  ( ph  ->  C  e.  A )
31, 2rspcime 2837 . 2  |-  ( ph  ->  E. x  e.  A  D  =  B )
4 elrnmptdv.3 . . 3  |-  ( ph  ->  D  e.  V )
5 elrnmptdv.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
65elrnmpt 4853 . . 3  |-  ( D  e.  V  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B ) )
74, 6syl 14 . 2  |-  ( ph  ->  ( D  e.  ran  F  <->  E. x  e.  A  D  =  B )
)
83, 7mpbird 166 1  |-  ( ph  ->  D  e.  ran  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    |-> cmpt 4043   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-mpt 4045  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator