Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspcime | GIF version |
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
Ref | Expression |
---|---|
rspcime.1 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) |
rspcime.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
rspcime | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcime.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcime.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜓) | |
3 | simpl 108 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝜑) | |
4 | 2, 3 | 2thd 174 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜑)) |
5 | id 19 | . 2 ⊢ (𝜑 → 𝜑) | |
6 | 1, 4, 5 | rspcedvd 2840 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 |
This theorem is referenced by: elrnmptdv 4865 |
Copyright terms: Public domain | W3C validator |