ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime GIF version

Theorem rspcime 2841
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rspcime.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
rspcime (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2 (𝜑𝐴𝐵)
2 rspcime.1 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
3 simpl 108 . . 3 ((𝜑𝑥 = 𝐴) → 𝜑)
42, 32thd 174 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜑))
5 id 19 . 2 (𝜑𝜑)
61, 4, 5rspcedvd 2840 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rex 2454  df-v 2732
This theorem is referenced by:  elrnmptdv  4865
  Copyright terms: Public domain W3C validator