ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime GIF version

Theorem rspcime 2885
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rspcime.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
rspcime (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2 (𝜑𝐴𝐵)
2 rspcime.1 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
3 simpl 109 . . 3 ((𝜑𝑥 = 𝐴) → 𝜑)
42, 32thd 175 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜑))
5 id 19 . 2 (𝜑𝜑)
61, 4, 5rspcedvd 2884 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775
This theorem is referenced by:  elrnmptdv  4937
  Copyright terms: Public domain W3C validator