ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspcime GIF version

Theorem rspcime 2894
Description: Prove a restricted existential. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
rspcime.1 ((𝜑𝑥 = 𝐴) → 𝜓)
rspcime.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
rspcime (𝜑 → ∃𝑥𝐵 𝜓)
Distinct variable groups:   𝜑,𝑥   𝑥,𝐵   𝑥,𝐴
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcime
StepHypRef Expression
1 rspcime.2 . 2 (𝜑𝐴𝐵)
2 rspcime.1 . . 3 ((𝜑𝑥 = 𝐴) → 𝜓)
3 simpl 109 . . 3 ((𝜑𝑥 = 𝐴) → 𝜑)
42, 32thd 175 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜑))
5 id 19 . 2 (𝜑𝜑)
61, 4, 5rspcedvd 2893 1 (𝜑 → ∃𝑥𝐵 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wrex 2489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-rex 2494  df-v 2781
This theorem is referenced by:  elrnmptdv  4954
  Copyright terms: Public domain W3C validator