Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexsv Unicode version

Theorem cbvrexsv 2603
 Description: Change bound variable by using a substitution. (Contributed by NM, 2-Mar-2008.) (Revised by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
cbvrexsv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem cbvrexsv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1467 . . 3
2 nfs1v 1864 . . 3
3 sbequ12 1702 . . 3
41, 2, 3cbvrex 2588 . 2
5 nfv 1467 . . . 4
65nfsb 1871 . . 3
7 nfv 1467 . . 3
8 sbequ 1769 . . 3
96, 7, 8cbvrex 2588 . 2
104, 9bitri 183 1
 Colors of variables: wff set class Syntax hints:   wb 104  wsb 1693  wrex 2361 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071 This theorem depends on definitions:  df-bi 116  df-nf 1396  df-sb 1694  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366 This theorem is referenced by:  rspesbca  2924  rexxpf  4596
 Copyright terms: Public domain W3C validator