![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspesbca | GIF version |
Description: Existence form of rspsbca 3048. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspesbca | ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2967 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | rspcev 2843 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) |
3 | cbvrexsv 2722 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 [wsb 1762 ∈ wcel 2148 ∃wrex 2456 [wsbc 2964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rex 2461 df-v 2741 df-sbc 2965 |
This theorem is referenced by: spesbc 3050 |
Copyright terms: Public domain | W3C validator |