Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rspesbca | GIF version |
Description: Existence form of rspsbca 3038. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
rspesbca | ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq2 2958 | . . 3 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | 1 | rspcev 2834 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) |
3 | cbvrexsv 2713 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝑦 / 𝑥]𝜑) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 [wsb 1755 ∈ wcel 2141 ∃wrex 2449 [wsbc 2955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 |
This theorem is referenced by: spesbc 3040 |
Copyright terms: Public domain | W3C validator |