ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb56 Unicode version

Theorem sb56 1873
Description: Two equivalent ways of expressing the proper substitution of 
y for  x in  ph, when  x and  y are distinct. Theorem 6.2 of [Quine] p. 40. The proof does not involve df-sb 1751. (Contributed by NM, 14-Apr-2008.)
Assertion
Ref Expression
sb56  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb56
StepHypRef Expression
1 hba1 1528 . 2  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x A. x ( x  =  y  ->  ph ) )
2 ax11v 1815 . . 3  |-  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) )
3 ax-4 1498 . . . 4  |-  ( A. x ( x  =  y  ->  ph )  -> 
( x  =  y  ->  ph ) )
43com12 30 . . 3  |-  ( x  =  y  ->  ( A. x ( x  =  y  ->  ph )  ->  ph ) )
52, 4impbid 128 . 2  |-  ( x  =  y  ->  ( ph 
<-> 
A. x ( x  =  y  ->  ph )
) )
61, 5equsex 1716 1  |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  sb6  1874  sb5  1875  alexeq  2852  dfdif3  3232
  Copyright terms: Public domain W3C validator