ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb7f GIF version

Theorem sb7f 1985
Description: This version of dfsb7 1984 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1519, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Hypothesis
Ref Expression
sb7f.1 (𝜑 → ∀𝑧𝜑)
Assertion
Ref Expression
sb7f ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sb7f
StepHypRef Expression
1 sb5 1880 . . 3 ([𝑧 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑧𝜑))
21sbbii 1758 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑))
3 sb7f.1 . . 3 (𝜑 → ∀𝑧𝜑)
43sbco2vh 1938 . 2 ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
5 sb5 1880 . 2 ([𝑦 / 𝑧]∃𝑥(𝑥 = 𝑧𝜑) ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
62, 4, 53bitr3i 209 1 ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1346  wex 1485  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator