| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
| Ref | Expression |
|---|---|
| rabeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 694 |
. . 3
| |
| 2 | 1 | albii 1516 |
. 2
|
| 3 | df-ral 2513 |
. 2
| |
| 4 | sbn 2003 |
. . . 4
| |
| 5 | 4 | albii 1516 |
. . 3
|
| 6 | nfv 1574 |
. . . 4
| |
| 7 | 6 | sb8 1902 |
. . 3
|
| 8 | eq0 3510 |
. . . 4
| |
| 9 | df-rab 2517 |
. . . . . . . 8
| |
| 10 | 9 | eleq2i 2296 |
. . . . . . 7
|
| 11 | df-clab 2216 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 184 |
. . . . . 6
|
| 13 | 12 | notbii 672 |
. . . . 5
|
| 14 | 13 | albii 1516 |
. . . 4
|
| 15 | 8, 14 | bitri 184 |
. . 3
|
| 16 | 5, 7, 15 | 3bitr4ri 213 |
. 2
|
| 17 | 2, 3, 16 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-nul 3492 |
| This theorem is referenced by: rabnc 3524 rabrsndc 3734 exmidsssnc 4287 ssfilem 7037 diffitest 7049 ssfirab 7098 ctssexmid 7317 exmidonfinlem 7371 iooidg 10105 icc0r 10122 fznlem 10237 ioo0 10479 ico0 10481 ioc0 10482 phiprmpw 12744 hashgcdeq 12762 unennn 12968 znnen 12969 fczpsrbag 14635 lgsquadlem2 15757 pw0ss 15883 umgrnloop0 15917 lfgrnloopen 15931 |
| Copyright terms: Public domain | W3C validator |