ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 Unicode version

Theorem rabeq0 3521
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )

Proof of Theorem rabeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imnan 694 . . 3  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
21albii 1516 . 2  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
3 df-ral 2513 . 2  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
4 sbn 2003 . . . 4  |-  ( [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
54albii 1516 . . 3  |-  ( A. y [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
6 nfv 1574 . . . 4  |-  F/ y  -.  ( x  e.  A  /\  ph )
76sb8 1902 . . 3  |-  ( A. x  -.  ( x  e.  A  /\  ph )  <->  A. y [ y  /  x ]  -.  (
x  e.  A  /\  ph ) )
8 eq0 3510 . . . 4  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  e.  A  |  ph }
)
9 df-rab 2517 . . . . . . . 8  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
109eleq2i 2296 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
11 df-clab 2216 . . . . . . 7  |-  ( y  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  [ y  /  x ] ( x  e.  A  /\  ph ) )
1210, 11bitri 184 . . . . . 6  |-  ( y  e.  { x  e.  A  |  ph }  <->  [ y  /  x ]
( x  e.  A  /\  ph ) )
1312notbii 672 . . . . 5  |-  ( -.  y  e.  { x  e.  A  |  ph }  <->  -. 
[ y  /  x ] ( x  e.  A  /\  ph )
)
1413albii 1516 . . . 4  |-  ( A. y  -.  y  e.  {
x  e.  A  |  ph }  <->  A. y  -.  [
y  /  x ]
( x  e.  A  /\  ph ) )
158, 14bitri 184 . . 3  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph )
)
165, 7, 153bitr4ri 213 . 2  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  -.  ( x  e.  A  /\  ph ) )
172, 3, 163bitr4ri 213 1  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1393    = wceq 1395   [wsb 1808    e. wcel 2200   {cab 2215   A.wral 2508   {crab 2512   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  rabnc  3524  rabrsndc  3734  exmidsssnc  4287  ssfilem  7037  diffitest  7049  ssfirab  7098  ctssexmid  7317  exmidonfinlem  7371  iooidg  10105  icc0r  10122  fznlem  10237  ioo0  10479  ico0  10481  ioc0  10482  phiprmpw  12744  hashgcdeq  12762  unennn  12968  znnen  12969  fczpsrbag  14635  lgsquadlem2  15757  pw0ss  15883  umgrnloop0  15917  lfgrnloopen  15931
  Copyright terms: Public domain W3C validator