| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
| Ref | Expression |
|---|---|
| rabeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 692 |
. . 3
| |
| 2 | 1 | albii 1493 |
. 2
|
| 3 | df-ral 2489 |
. 2
| |
| 4 | sbn 1980 |
. . . 4
| |
| 5 | 4 | albii 1493 |
. . 3
|
| 6 | nfv 1551 |
. . . 4
| |
| 7 | 6 | sb8 1879 |
. . 3
|
| 8 | eq0 3479 |
. . . 4
| |
| 9 | df-rab 2493 |
. . . . . . . 8
| |
| 10 | 9 | eleq2i 2272 |
. . . . . . 7
|
| 11 | df-clab 2192 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 184 |
. . . . . 6
|
| 13 | 12 | notbii 670 |
. . . . 5
|
| 14 | 13 | albii 1493 |
. . . 4
|
| 15 | 8, 14 | bitri 184 |
. . 3
|
| 16 | 5, 7, 15 | 3bitr4ri 213 |
. 2
|
| 17 | 2, 3, 16 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rab 2493 df-v 2774 df-dif 3168 df-nul 3461 |
| This theorem is referenced by: rabnc 3493 rabrsndc 3701 exmidsssnc 4247 ssfilem 6972 diffitest 6984 ssfirab 7033 ctssexmid 7252 exmidonfinlem 7301 iooidg 10031 icc0r 10048 fznlem 10163 ioo0 10402 ico0 10404 ioc0 10405 phiprmpw 12544 hashgcdeq 12562 unennn 12768 znnen 12769 fczpsrbag 14433 lgsquadlem2 15555 |
| Copyright terms: Public domain | W3C validator |