ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 Unicode version

Theorem rabeq0 3490
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )

Proof of Theorem rabeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imnan 692 . . 3  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
21albii 1493 . 2  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
3 df-ral 2489 . 2  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
4 sbn 1980 . . . 4  |-  ( [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
54albii 1493 . . 3  |-  ( A. y [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
6 nfv 1551 . . . 4  |-  F/ y  -.  ( x  e.  A  /\  ph )
76sb8 1879 . . 3  |-  ( A. x  -.  ( x  e.  A  /\  ph )  <->  A. y [ y  /  x ]  -.  (
x  e.  A  /\  ph ) )
8 eq0 3479 . . . 4  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  e.  A  |  ph }
)
9 df-rab 2493 . . . . . . . 8  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
109eleq2i 2272 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
11 df-clab 2192 . . . . . . 7  |-  ( y  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  [ y  /  x ] ( x  e.  A  /\  ph ) )
1210, 11bitri 184 . . . . . 6  |-  ( y  e.  { x  e.  A  |  ph }  <->  [ y  /  x ]
( x  e.  A  /\  ph ) )
1312notbii 670 . . . . 5  |-  ( -.  y  e.  { x  e.  A  |  ph }  <->  -. 
[ y  /  x ] ( x  e.  A  /\  ph )
)
1413albii 1493 . . . 4  |-  ( A. y  -.  y  e.  {
x  e.  A  |  ph }  <->  A. y  -.  [
y  /  x ]
( x  e.  A  /\  ph ) )
158, 14bitri 184 . . 3  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph )
)
165, 7, 153bitr4ri 213 . 2  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  -.  ( x  e.  A  /\  ph ) )
172, 3, 163bitr4ri 213 1  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1371    = wceq 1373   [wsb 1785    e. wcel 2176   {cab 2191   A.wral 2484   {crab 2488   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rab 2493  df-v 2774  df-dif 3168  df-nul 3461
This theorem is referenced by:  rabnc  3493  rabrsndc  3701  exmidsssnc  4247  ssfilem  6972  diffitest  6984  ssfirab  7033  ctssexmid  7252  exmidonfinlem  7301  iooidg  10031  icc0r  10048  fznlem  10163  ioo0  10402  ico0  10404  ioc0  10405  phiprmpw  12544  hashgcdeq  12562  unennn  12768  znnen  12769  fczpsrbag  14433  lgsquadlem2  15555
  Copyright terms: Public domain W3C validator