| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) | 
| Ref | Expression | 
|---|---|
| rabeq0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imnan 691 | 
. . 3
 | |
| 2 | 1 | albii 1484 | 
. 2
 | 
| 3 | df-ral 2480 | 
. 2
 | |
| 4 | sbn 1971 | 
. . . 4
 | |
| 5 | 4 | albii 1484 | 
. . 3
 | 
| 6 | nfv 1542 | 
. . . 4
 | |
| 7 | 6 | sb8 1870 | 
. . 3
 | 
| 8 | eq0 3469 | 
. . . 4
 | |
| 9 | df-rab 2484 | 
. . . . . . . 8
 | |
| 10 | 9 | eleq2i 2263 | 
. . . . . . 7
 | 
| 11 | df-clab 2183 | 
. . . . . . 7
 | |
| 12 | 10, 11 | bitri 184 | 
. . . . . 6
 | 
| 13 | 12 | notbii 669 | 
. . . . 5
 | 
| 14 | 13 | albii 1484 | 
. . . 4
 | 
| 15 | 8, 14 | bitri 184 | 
. . 3
 | 
| 16 | 5, 7, 15 | 3bitr4ri 213 | 
. 2
 | 
| 17 | 2, 3, 16 | 3bitr4ri 213 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-nul 3451 | 
| This theorem is referenced by: rabnc 3483 rabrsndc 3690 exmidsssnc 4236 ssfilem 6936 diffitest 6948 ssfirab 6997 ctssexmid 7216 exmidonfinlem 7260 iooidg 9984 icc0r 10001 fznlem 10116 ioo0 10349 ico0 10351 ioc0 10352 phiprmpw 12390 hashgcdeq 12408 unennn 12614 znnen 12615 fczpsrbag 14225 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |