| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version | ||
| Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
| Ref | Expression |
|---|---|
| rabeq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imnan 692 |
. . 3
| |
| 2 | 1 | albii 1494 |
. 2
|
| 3 | df-ral 2491 |
. 2
| |
| 4 | sbn 1981 |
. . . 4
| |
| 5 | 4 | albii 1494 |
. . 3
|
| 6 | nfv 1552 |
. . . 4
| |
| 7 | 6 | sb8 1880 |
. . 3
|
| 8 | eq0 3487 |
. . . 4
| |
| 9 | df-rab 2495 |
. . . . . . . 8
| |
| 10 | 9 | eleq2i 2274 |
. . . . . . 7
|
| 11 | df-clab 2194 |
. . . . . . 7
| |
| 12 | 10, 11 | bitri 184 |
. . . . . 6
|
| 13 | 12 | notbii 670 |
. . . . 5
|
| 14 | 13 | albii 1494 |
. . . 4
|
| 15 | 8, 14 | bitri 184 |
. . 3
|
| 16 | 5, 7, 15 | 3bitr4ri 213 |
. 2
|
| 17 | 2, 3, 16 | 3bitr4ri 213 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rab 2495 df-v 2778 df-dif 3176 df-nul 3469 |
| This theorem is referenced by: rabnc 3501 rabrsndc 3711 exmidsssnc 4263 ssfilem 6998 diffitest 7010 ssfirab 7059 ctssexmid 7278 exmidonfinlem 7332 iooidg 10066 icc0r 10083 fznlem 10198 ioo0 10439 ico0 10441 ioc0 10442 phiprmpw 12659 hashgcdeq 12677 unennn 12883 znnen 12884 fczpsrbag 14548 lgsquadlem2 15670 pw0ss 15794 lfgrnloopen 15839 |
| Copyright terms: Public domain | W3C validator |