ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeq0 Unicode version

Theorem rabeq0 3444
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.)
Assertion
Ref Expression
rabeq0  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )

Proof of Theorem rabeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 imnan 685 . . 3  |-  ( ( x  e.  A  ->  -.  ph )  <->  -.  (
x  e.  A  /\  ph ) )
21albii 1463 . 2  |-  ( A. x ( x  e.  A  ->  -.  ph )  <->  A. x  -.  ( x  e.  A  /\  ph ) )
3 df-ral 2453 . 2  |-  ( A. x  e.  A  -.  ph  <->  A. x ( x  e.  A  ->  -.  ph )
)
4 sbn 1945 . . . 4  |-  ( [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
54albii 1463 . . 3  |-  ( A. y [ y  /  x ]  -.  ( x  e.  A  /\  ph )  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph ) )
6 nfv 1521 . . . 4  |-  F/ y  -.  ( x  e.  A  /\  ph )
76sb8 1849 . . 3  |-  ( A. x  -.  ( x  e.  A  /\  ph )  <->  A. y [ y  /  x ]  -.  (
x  e.  A  /\  ph ) )
8 eq0 3433 . . . 4  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  e.  A  |  ph }
)
9 df-rab 2457 . . . . . . . 8  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
109eleq2i 2237 . . . . . . 7  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
11 df-clab 2157 . . . . . . 7  |-  ( y  e.  { x  |  ( x  e.  A  /\  ph ) }  <->  [ y  /  x ] ( x  e.  A  /\  ph ) )
1210, 11bitri 183 . . . . . 6  |-  ( y  e.  { x  e.  A  |  ph }  <->  [ y  /  x ]
( x  e.  A  /\  ph ) )
1312notbii 663 . . . . 5  |-  ( -.  y  e.  { x  e.  A  |  ph }  <->  -. 
[ y  /  x ] ( x  e.  A  /\  ph )
)
1413albii 1463 . . . 4  |-  ( A. y  -.  y  e.  {
x  e.  A  |  ph }  <->  A. y  -.  [
y  /  x ]
( x  e.  A  /\  ph ) )
158, 14bitri 183 . . 3  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. y  -.  [ y  /  x ] ( x  e.  A  /\  ph )
)
165, 7, 153bitr4ri 212 . 2  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  -.  ( x  e.  A  /\  ph ) )
172, 3, 163bitr4ri 212 1  |-  ( { x  e.  A  |  ph }  =  (/)  <->  A. x  e.  A  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    = wceq 1348   [wsb 1755    e. wcel 2141   {cab 2156   A.wral 2448   {crab 2452   (/)c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by:  rabnc  3447  rabrsndc  3651  exmidsssnc  4189  ssfilem  6853  diffitest  6865  ssfirab  6911  ctssexmid  7126  exmidonfinlem  7170  iooidg  9866  icc0r  9883  fznlem  9997  ioo0  10216  ico0  10218  ioc0  10219  phiprmpw  12176  hashgcdeq  12193  unennn  12352  znnen  12353
  Copyright terms: Public domain W3C validator