Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 680 | . . 3 | |
2 | 1 | albii 1458 | . 2 |
3 | df-ral 2449 | . 2 | |
4 | sbn 1940 | . . . 4 | |
5 | 4 | albii 1458 | . . 3 |
6 | nfv 1516 | . . . 4 | |
7 | 6 | sb8 1844 | . . 3 |
8 | eq0 3427 | . . . 4 | |
9 | df-rab 2453 | . . . . . . . 8 | |
10 | 9 | eleq2i 2233 | . . . . . . 7 |
11 | df-clab 2152 | . . . . . . 7 | |
12 | 10, 11 | bitri 183 | . . . . . 6 |
13 | 12 | notbii 658 | . . . . 5 |
14 | 13 | albii 1458 | . . . 4 |
15 | 8, 14 | bitri 183 | . . 3 |
16 | 5, 7, 15 | 3bitr4ri 212 | . 2 |
17 | 2, 3, 16 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1341 wceq 1343 wsb 1750 wcel 2136 cab 2151 wral 2444 crab 2448 c0 3409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-nul 3410 |
This theorem is referenced by: rabnc 3441 rabrsndc 3644 exmidsssnc 4182 ssfilem 6841 diffitest 6853 ssfirab 6899 ctssexmid 7114 exmidonfinlem 7149 iooidg 9845 icc0r 9862 fznlem 9976 ioo0 10195 ico0 10197 ioc0 10198 phiprmpw 12154 hashgcdeq 12171 unennn 12330 znnen 12331 |
Copyright terms: Public domain | W3C validator |