Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabeq0 | Unicode version |
Description: Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) |
Ref | Expression |
---|---|
rabeq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imnan 685 | . . 3 | |
2 | 1 | albii 1463 | . 2 |
3 | df-ral 2453 | . 2 | |
4 | sbn 1945 | . . . 4 | |
5 | 4 | albii 1463 | . . 3 |
6 | nfv 1521 | . . . 4 | |
7 | 6 | sb8 1849 | . . 3 |
8 | eq0 3433 | . . . 4 | |
9 | df-rab 2457 | . . . . . . . 8 | |
10 | 9 | eleq2i 2237 | . . . . . . 7 |
11 | df-clab 2157 | . . . . . . 7 | |
12 | 10, 11 | bitri 183 | . . . . . 6 |
13 | 12 | notbii 663 | . . . . 5 |
14 | 13 | albii 1463 | . . . 4 |
15 | 8, 14 | bitri 183 | . . 3 |
16 | 5, 7, 15 | 3bitr4ri 212 | . 2 |
17 | 2, 3, 16 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wal 1346 wceq 1348 wsb 1755 wcel 2141 cab 2156 wral 2448 crab 2452 c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-nul 3415 |
This theorem is referenced by: rabnc 3447 rabrsndc 3651 exmidsssnc 4189 ssfilem 6853 diffitest 6865 ssfirab 6911 ctssexmid 7126 exmidonfinlem 7170 iooidg 9866 icc0r 9883 fznlem 9997 ioo0 10216 ico0 10218 ioc0 10219 phiprmpw 12176 hashgcdeq 12193 unennn 12352 znnen 12353 |
Copyright terms: Public domain | W3C validator |