ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq0 Unicode version

Theorem abeq0 3522
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
abeq0  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )

Proof of Theorem abeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbn 2003 . . 3  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
21albii 1516 . 2  |-  ( A. y [ y  /  x ]  -.  ph  <->  A. y  -.  [
y  /  x ] ph )
3 nfv 1574 . . 3  |-  F/ y  -.  ph
43sb8 1902 . 2  |-  ( A. x  -.  ph  <->  A. y [ y  /  x ]  -.  ph )
5 eq0 3510 . . 3  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  |  ph } )
6 df-clab 2216 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
76notbii 672 . . . 4  |-  ( -.  y  e.  { x  |  ph }  <->  -.  [ y  /  x ] ph )
87albii 1516 . . 3  |-  ( A. y  -.  y  e.  {
x  |  ph }  <->  A. y  -.  [ y  /  x ] ph )
95, 8bitri 184 . 2  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  [
y  /  x ] ph )
102, 4, 93bitr4ri 213 1  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1393    = wceq 1395   [wsb 1808    e. wcel 2200   {cab 2215   (/)c0 3491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-nul 3492
This theorem is referenced by:  opprc  3878
  Copyright terms: Public domain W3C validator