ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq0 Unicode version

Theorem abeq0 3499
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
abeq0  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )

Proof of Theorem abeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbn 1981 . . 3  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
21albii 1494 . 2  |-  ( A. y [ y  /  x ]  -.  ph  <->  A. y  -.  [
y  /  x ] ph )
3 nfv 1552 . . 3  |-  F/ y  -.  ph
43sb8 1880 . 2  |-  ( A. x  -.  ph  <->  A. y [ y  /  x ]  -.  ph )
5 eq0 3487 . . 3  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  |  ph } )
6 df-clab 2194 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
76notbii 670 . . . 4  |-  ( -.  y  e.  { x  |  ph }  <->  -.  [ y  /  x ] ph )
87albii 1494 . . 3  |-  ( A. y  -.  y  e.  {
x  |  ph }  <->  A. y  -.  [ y  /  x ] ph )
95, 8bitri 184 . 2  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  [
y  /  x ] ph )
102, 4, 93bitr4ri 213 1  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1371    = wceq 1373   [wsb 1786    e. wcel 2178   {cab 2193   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-nul 3469
This theorem is referenced by:  opprc  3854
  Copyright terms: Public domain W3C validator