ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abeq0 Unicode version

Theorem abeq0 3455
Description: Condition for a class abstraction to be empty. (Contributed by Jim Kingdon, 12-Aug-2018.)
Assertion
Ref Expression
abeq0  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )

Proof of Theorem abeq0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbn 1952 . . 3  |-  ( [ y  /  x ]  -.  ph  <->  -.  [ y  /  x ] ph )
21albii 1470 . 2  |-  ( A. y [ y  /  x ]  -.  ph  <->  A. y  -.  [
y  /  x ] ph )
3 nfv 1528 . . 3  |-  F/ y  -.  ph
43sb8 1856 . 2  |-  ( A. x  -.  ph  <->  A. y [ y  /  x ]  -.  ph )
5 eq0 3443 . . 3  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  y  e.  { x  |  ph } )
6 df-clab 2164 . . . . 5  |-  ( y  e.  { x  | 
ph }  <->  [ y  /  x ] ph )
76notbii 668 . . . 4  |-  ( -.  y  e.  { x  |  ph }  <->  -.  [ y  /  x ] ph )
87albii 1470 . . 3  |-  ( A. y  -.  y  e.  {
x  |  ph }  <->  A. y  -.  [ y  /  x ] ph )
95, 8bitri 184 . 2  |-  ( { x  |  ph }  =  (/)  <->  A. y  -.  [
y  /  x ] ph )
102, 4, 93bitr4ri 213 1  |-  ( { x  |  ph }  =  (/)  <->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1351    = wceq 1353   [wsb 1762    e. wcel 2148   {cab 2163   (/)c0 3424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425
This theorem is referenced by:  opprc  3801
  Copyright terms: Public domain W3C validator