ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc2iedv Unicode version

Theorem sbc2iedv 3027
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Hypotheses
Ref Expression
sbc2iedv.1  |-  A  e. 
_V
sbc2iedv.2  |-  B  e. 
_V
sbc2iedv.3  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ( ps 
<->  ch ) ) )
Assertion
Ref Expression
sbc2iedv  |-  ( ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ps  <->  ch )
)
Distinct variable groups:    x, y, A   
y, B    ph, x, y    ch, x, y
Allowed substitution hints:    ps( x, y)    B( x)

Proof of Theorem sbc2iedv
StepHypRef Expression
1 sbc2iedv.1 . . 3  |-  A  e. 
_V
21a1i 9 . 2  |-  ( ph  ->  A  e.  _V )
3 sbc2iedv.2 . . . 4  |-  B  e. 
_V
43a1i 9 . . 3  |-  ( (
ph  /\  x  =  A )  ->  B  e.  _V )
5 sbc2iedv.3 . . . 4  |-  ( ph  ->  ( ( x  =  A  /\  y  =  B )  ->  ( ps 
<->  ch ) ) )
65impl 378 . . 3  |-  ( ( ( ph  /\  x  =  A )  /\  y  =  B )  ->  ( ps 
<->  ch ) )
74, 6sbcied 2991 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( [. B  /  y ]. ps  <->  ch ) )
82, 7sbcied 2991 1  |-  ( ph  ->  ( [. A  /  x ]. [. B  / 
y ]. ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   [.wsbc 2955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956
This theorem is referenced by:  dfoprab3  6170  ismnddef  12654
  Copyright terms: Public domain W3C validator