ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef Unicode version

Theorem ismnddef 13002
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b  |-  B  =  ( Base `  G
)
ismnddef.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnddef  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Distinct variable groups:    B, a, e    .+ , a, e
Allowed substitution hints:    G( e, a)

Proof of Theorem ismnddef
Dummy variables  b  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12679 . . . 4  |-  Base  Fn  _V
2 vex 2763 . . . 4  |-  g  e. 
_V
3 funfvex 5572 . . . . 5  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5355 . . . 4  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . 3  |-  ( Base `  g )  e.  _V
6 plusgslid 12733 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76slotex 12648 . . . 4  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
87elv 2764 . . 3  |-  ( +g  `  g )  e.  _V
9 fveq2 5555 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
10 ismnddef.b . . . . . . 7  |-  B  =  ( Base `  G
)
119, 10eqtr4di 2244 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
1211eqeq2d 2205 . . . . 5  |-  ( g  =  G  ->  (
b  =  ( Base `  g )  <->  b  =  B ) )
13 fveq2 5555 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
14 ismnddef.p . . . . . . 7  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2244 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1615eqeq2d 2205 . . . . 5  |-  ( g  =  G  ->  (
p  =  ( +g  `  g )  <->  p  =  .+  ) )
1712, 16anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  <-> 
( b  =  B  /\  p  =  .+  ) ) )
18 simpl 109 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
b  =  B )
19 oveq 5925 . . . . . . . . 9  |-  ( p  =  .+  ->  (
e p a )  =  ( e  .+  a ) )
2019eqeq1d 2202 . . . . . . . 8  |-  ( p  =  .+  ->  (
( e p a )  =  a  <->  ( e  .+  a )  =  a ) )
21 oveq 5925 . . . . . . . . 9  |-  ( p  =  .+  ->  (
a p e )  =  ( a  .+  e ) )
2221eqeq1d 2202 . . . . . . . 8  |-  ( p  =  .+  ->  (
( a p e )  =  a  <->  ( a  .+  e )  =  a ) )
2320, 22anbi12d 473 . . . . . . 7  |-  ( p  =  .+  ->  (
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
2423adantl 277 . . . . . 6  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2518, 24raleqbidv 2706 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2618, 25rexeqbidv 2707 . . . 4  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( E. e  e.  b  A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2717, 26biimtrdi 163 . . 3  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  ->  ( E. e  e.  b  A. a  e.  b  ( (
e p a )  =  a  /\  (
a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) ) )
285, 8, 27sbc2iedv 3059 . 2  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( ( e  .+  a )  =  a  /\  ( a  .+  e )  =  a ) ) )
29 df-mnd 13001 . 2  |-  Mnd  =  { g  e. Smgrp  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a ) }
3028, 29elrab2 2920 1  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   _Vcvv 2760   [.wsbc 2986    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Basecbs 12621   +g cplusg 12698  Smgrpcsgrp 12987   Mndcmnd 13000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-plusg 12711  df-mnd 13001
This theorem is referenced by:  ismnd  13003  sgrpidmndm  13004  mndsgrp  13005  mnd1  13030
  Copyright terms: Public domain W3C validator