Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ismnddef | Unicode version |
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.) |
Ref | Expression |
---|---|
ismnddef.b | |
ismnddef.p |
Ref | Expression |
---|---|
ismnddef | Smgrp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | basfn 12484 | . . . 4 | |
2 | vex 2738 | . . . 4 | |
3 | funfvex 5524 | . . . . 5 | |
4 | 3 | funfni 5308 | . . . 4 |
5 | 1, 2, 4 | mp2an 426 | . . 3 |
6 | plusgslid 12524 | . . . . 5 Slot | |
7 | 6 | slotex 12454 | . . . 4 |
8 | 7 | elv 2739 | . . 3 |
9 | fveq2 5507 | . . . . . . 7 | |
10 | ismnddef.b | . . . . . . 7 | |
11 | 9, 10 | eqtr4di 2226 | . . . . . 6 |
12 | 11 | eqeq2d 2187 | . . . . 5 |
13 | fveq2 5507 | . . . . . . 7 | |
14 | ismnddef.p | . . . . . . 7 | |
15 | 13, 14 | eqtr4di 2226 | . . . . . 6 |
16 | 15 | eqeq2d 2187 | . . . . 5 |
17 | 12, 16 | anbi12d 473 | . . . 4 |
18 | simpl 109 | . . . . 5 | |
19 | oveq 5871 | . . . . . . . . 9 | |
20 | 19 | eqeq1d 2184 | . . . . . . . 8 |
21 | oveq 5871 | . . . . . . . . 9 | |
22 | 21 | eqeq1d 2184 | . . . . . . . 8 |
23 | 20, 22 | anbi12d 473 | . . . . . . 7 |
24 | 23 | adantl 277 | . . . . . 6 |
25 | 18, 24 | raleqbidv 2682 | . . . . 5 |
26 | 18, 25 | rexeqbidv 2683 | . . . 4 |
27 | 17, 26 | syl6bi 163 | . . 3 |
28 | 5, 8, 27 | sbc2iedv 3033 | . 2 |
29 | df-mnd 12682 | . 2 Smgrp | |
30 | 28, 29 | elrab2 2894 | 1 Smgrp |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wrex 2454 cvv 2735 wsbc 2960 wfn 5203 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 Smgrpcsgrp 12671 cmnd 12681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-mnd 12682 |
This theorem is referenced by: ismnd 12684 sgrpidmndm 12685 mndsgrp 12686 mnd1 12708 |
Copyright terms: Public domain | W3C validator |