ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef Unicode version

Theorem ismnddef 12683
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b  |-  B  =  ( Base `  G
)
ismnddef.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnddef  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Distinct variable groups:    B, a, e    .+ , a, e
Allowed substitution hints:    G( e, a)

Proof of Theorem ismnddef
Dummy variables  b  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12484 . . . 4  |-  Base  Fn  _V
2 vex 2738 . . . 4  |-  g  e. 
_V
3 funfvex 5524 . . . . 5  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5308 . . . 4  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . 3  |-  ( Base `  g )  e.  _V
6 plusgslid 12524 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76slotex 12454 . . . 4  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
87elv 2739 . . 3  |-  ( +g  `  g )  e.  _V
9 fveq2 5507 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
10 ismnddef.b . . . . . . 7  |-  B  =  ( Base `  G
)
119, 10eqtr4di 2226 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
1211eqeq2d 2187 . . . . 5  |-  ( g  =  G  ->  (
b  =  ( Base `  g )  <->  b  =  B ) )
13 fveq2 5507 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
14 ismnddef.p . . . . . . 7  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2226 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1615eqeq2d 2187 . . . . 5  |-  ( g  =  G  ->  (
p  =  ( +g  `  g )  <->  p  =  .+  ) )
1712, 16anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  <-> 
( b  =  B  /\  p  =  .+  ) ) )
18 simpl 109 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
b  =  B )
19 oveq 5871 . . . . . . . . 9  |-  ( p  =  .+  ->  (
e p a )  =  ( e  .+  a ) )
2019eqeq1d 2184 . . . . . . . 8  |-  ( p  =  .+  ->  (
( e p a )  =  a  <->  ( e  .+  a )  =  a ) )
21 oveq 5871 . . . . . . . . 9  |-  ( p  =  .+  ->  (
a p e )  =  ( a  .+  e ) )
2221eqeq1d 2184 . . . . . . . 8  |-  ( p  =  .+  ->  (
( a p e )  =  a  <->  ( a  .+  e )  =  a ) )
2320, 22anbi12d 473 . . . . . . 7  |-  ( p  =  .+  ->  (
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
2423adantl 277 . . . . . 6  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2518, 24raleqbidv 2682 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2618, 25rexeqbidv 2683 . . . 4  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( E. e  e.  b  A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2717, 26syl6bi 163 . . 3  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  ->  ( E. e  e.  b  A. a  e.  b  ( (
e p a )  =  a  /\  (
a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) ) )
285, 8, 27sbc2iedv 3033 . 2  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( ( e  .+  a )  =  a  /\  ( a  .+  e )  =  a ) ) )
29 df-mnd 12682 . 2  |-  Mnd  =  { g  e. Smgrp  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a ) }
3028, 29elrab2 2894 1  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453   E.wrex 2454   _Vcvv 2735   [.wsbc 2960    Fn wfn 5203   ` cfv 5208  (class class class)co 5865   Basecbs 12427   +g cplusg 12491  Smgrpcsgrp 12671   Mndcmnd 12681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-ov 5868  df-inn 8891  df-2 8949  df-ndx 12430  df-slot 12431  df-base 12433  df-plusg 12504  df-mnd 12682
This theorem is referenced by:  ismnd  12684  sgrpidmndm  12685  mndsgrp  12686  mnd1  12708
  Copyright terms: Public domain W3C validator