ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef Unicode version

Theorem ismnddef 12819
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b  |-  B  =  ( Base `  G
)
ismnddef.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnddef  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Distinct variable groups:    B, a, e    .+ , a, e
Allowed substitution hints:    G( e, a)

Proof of Theorem ismnddef
Dummy variables  b  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 12520 . . . 4  |-  Base  Fn  _V
2 vex 2741 . . . 4  |-  g  e. 
_V
3 funfvex 5533 . . . . 5  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5317 . . . 4  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . 3  |-  ( Base `  g )  e.  _V
6 plusgslid 12571 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76slotex 12489 . . . 4  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
87elv 2742 . . 3  |-  ( +g  `  g )  e.  _V
9 fveq2 5516 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
10 ismnddef.b . . . . . . 7  |-  B  =  ( Base `  G
)
119, 10eqtr4di 2228 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
1211eqeq2d 2189 . . . . 5  |-  ( g  =  G  ->  (
b  =  ( Base `  g )  <->  b  =  B ) )
13 fveq2 5516 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
14 ismnddef.p . . . . . . 7  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2228 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1615eqeq2d 2189 . . . . 5  |-  ( g  =  G  ->  (
p  =  ( +g  `  g )  <->  p  =  .+  ) )
1712, 16anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  <-> 
( b  =  B  /\  p  =  .+  ) ) )
18 simpl 109 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
b  =  B )
19 oveq 5881 . . . . . . . . 9  |-  ( p  =  .+  ->  (
e p a )  =  ( e  .+  a ) )
2019eqeq1d 2186 . . . . . . . 8  |-  ( p  =  .+  ->  (
( e p a )  =  a  <->  ( e  .+  a )  =  a ) )
21 oveq 5881 . . . . . . . . 9  |-  ( p  =  .+  ->  (
a p e )  =  ( a  .+  e ) )
2221eqeq1d 2186 . . . . . . . 8  |-  ( p  =  .+  ->  (
( a p e )  =  a  <->  ( a  .+  e )  =  a ) )
2320, 22anbi12d 473 . . . . . . 7  |-  ( p  =  .+  ->  (
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
2423adantl 277 . . . . . 6  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2518, 24raleqbidv 2685 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2618, 25rexeqbidv 2686 . . . 4  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( E. e  e.  b  A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2717, 26syl6bi 163 . . 3  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  ->  ( E. e  e.  b  A. a  e.  b  ( (
e p a )  =  a  /\  (
a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) ) )
285, 8, 27sbc2iedv 3036 . 2  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( ( e  .+  a )  =  a  /\  ( a  .+  e )  =  a ) ) )
29 df-mnd 12818 . 2  |-  Mnd  =  { g  e. Smgrp  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a ) }
3028, 29elrab2 2897 1  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2738   [.wsbc 2963    Fn wfn 5212   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536  Smgrpcsgrp 12807   Mndcmnd 12817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-iota 5179  df-fun 5219  df-fn 5220  df-fv 5225  df-ov 5878  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-mnd 12818
This theorem is referenced by:  ismnd  12820  sgrpidmndm  12821  mndsgrp  12822  mnd1  12847
  Copyright terms: Public domain W3C validator