ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismnddef Unicode version

Theorem ismnddef 13451
Description: The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
Hypotheses
Ref Expression
ismnddef.b  |-  B  =  ( Base `  G
)
ismnddef.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ismnddef  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Distinct variable groups:    B, a, e    .+ , a, e
Allowed substitution hints:    G( e, a)

Proof of Theorem ismnddef
Dummy variables  b  g  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 basfn 13091 . . . 4  |-  Base  Fn  _V
2 vex 2802 . . . 4  |-  g  e. 
_V
3 funfvex 5644 . . . . 5  |-  ( ( Fun  Base  /\  g  e.  dom  Base )  ->  ( Base `  g )  e. 
_V )
43funfni 5423 . . . 4  |-  ( (
Base  Fn  _V  /\  g  e.  _V )  ->  ( Base `  g )  e. 
_V )
51, 2, 4mp2an 426 . . 3  |-  ( Base `  g )  e.  _V
6 plusgslid 13145 . . . . 5  |-  ( +g  = Slot  ( +g  `  ndx )  /\  ( +g  `  ndx )  e.  NN )
76slotex 13059 . . . 4  |-  ( g  e.  _V  ->  ( +g  `  g )  e. 
_V )
87elv 2803 . . 3  |-  ( +g  `  g )  e.  _V
9 fveq2 5627 . . . . . . 7  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
10 ismnddef.b . . . . . . 7  |-  B  =  ( Base `  G
)
119, 10eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( Base `  g )  =  B )
1211eqeq2d 2241 . . . . 5  |-  ( g  =  G  ->  (
b  =  ( Base `  g )  <->  b  =  B ) )
13 fveq2 5627 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
14 ismnddef.p . . . . . . 7  |-  .+  =  ( +g  `  G )
1513, 14eqtr4di 2280 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
1615eqeq2d 2241 . . . . 5  |-  ( g  =  G  ->  (
p  =  ( +g  `  g )  <->  p  =  .+  ) )
1712, 16anbi12d 473 . . . 4  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  <-> 
( b  =  B  /\  p  =  .+  ) ) )
18 simpl 109 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
b  =  B )
19 oveq 6007 . . . . . . . . 9  |-  ( p  =  .+  ->  (
e p a )  =  ( e  .+  a ) )
2019eqeq1d 2238 . . . . . . . 8  |-  ( p  =  .+  ->  (
( e p a )  =  a  <->  ( e  .+  a )  =  a ) )
21 oveq 6007 . . . . . . . . 9  |-  ( p  =  .+  ->  (
a p e )  =  ( a  .+  e ) )
2221eqeq1d 2238 . . . . . . . 8  |-  ( p  =  .+  ->  (
( a p e )  =  a  <->  ( a  .+  e )  =  a ) )
2320, 22anbi12d 473 . . . . . . 7  |-  ( p  =  .+  ->  (
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
2423adantl 277 . . . . . 6  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2518, 24raleqbidv 2744 . . . . 5  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2618, 25rexeqbidv 2745 . . . 4  |-  ( ( b  =  B  /\  p  =  .+  )  -> 
( E. e  e.  b  A. a  e.  b  ( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) )
2717, 26biimtrdi 163 . . 3  |-  ( g  =  G  ->  (
( b  =  (
Base `  g )  /\  p  =  ( +g  `  g ) )  ->  ( E. e  e.  b  A. a  e.  b  ( (
e p a )  =  a  /\  (
a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( (
e  .+  a )  =  a  /\  (
a  .+  e )  =  a ) ) ) )
285, 8, 27sbc2iedv 3101 . 2  |-  ( g  =  G  ->  ( [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a )  <->  E. e  e.  B  A. a  e.  B  ( ( e  .+  a )  =  a  /\  ( a  .+  e )  =  a ) ) )
29 df-mnd 13450 . 2  |-  Mnd  =  { g  e. Smgrp  |  [. ( Base `  g
)  /  b ]. [. ( +g  `  g
)  /  p ]. E. e  e.  b  A. a  e.  b 
( ( e p a )  =  a  /\  ( a p e )  =  a ) }
3028, 29elrab2 2962 1  |-  ( G  e.  Mnd  <->  ( G  e. Smgrp  /\  E. e  e.  B  A. a  e.  B  ( ( e 
.+  a )  =  a  /\  ( a 
.+  e )  =  a ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   [.wsbc 3028    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   +g cplusg 13110  Smgrpcsgrp 13434   Mndcmnd 13449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6004  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-mnd 13450
This theorem is referenced by:  ismnd  13452  sgrpidmndm  13453  mndsgrp  13454  mnd1  13488
  Copyright terms: Public domain W3C validator