| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcied | Unicode version | ||
| Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbcied.1 |
|
| sbcied.2 |
|
| Ref | Expression |
|---|---|
| sbcied |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcied.1 |
. 2
| |
| 2 | sbcied.2 |
. 2
| |
| 3 | nfv 1542 |
. 2
| |
| 4 | nfvd 1543 |
. 2
| |
| 5 | 1, 2, 3, 4 | sbciedf 3025 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-sbc 2990 |
| This theorem is referenced by: sbcied2 3027 sbc2iedv 3062 sbc3ie 3063 sbcralt 3066 sbcrext 3067 euotd 4288 riota5f 5905 issrg 13597 islmod 13923 |
| Copyright terms: Public domain | W3C validator |