ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied Unicode version

Theorem sbcied 3065
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1  |-  ( ph  ->  A  e.  V )
sbcied.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcied  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem sbcied
StepHypRef Expression
1 sbcied.1 . 2  |-  ( ph  ->  A  e.  V )
2 sbcied.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
3 nfv 1574 . 2  |-  F/ x ph
4 nfvd 1575 . 2  |-  ( ph  ->  F/ x ch )
51, 2, 3, 4sbciedf 3064 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbcied2  3066  sbc2iedv  3101  sbc3ie  3102  sbcralt  3105  sbcrext  3106  euotd  4341  riota5f  5981  wrdind  11254  issrg  13928  islmod  14255
  Copyright terms: Public domain W3C validator