ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcied Unicode version

Theorem sbcied 2999
Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
Hypotheses
Ref Expression
sbcied.1  |-  ( ph  ->  A  e.  V )
sbcied.2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
sbcied  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Distinct variable groups:    x, A    ph, x    ch, x
Allowed substitution hints:    ps( x)    V( x)

Proof of Theorem sbcied
StepHypRef Expression
1 sbcied.1 . 2  |-  ( ph  ->  A  e.  V )
2 sbcied.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  ( ps 
<->  ch ) )
3 nfv 1528 . 2  |-  F/ x ph
4 nfvd 1529 . 2  |-  ( ph  ->  F/ x ch )
51, 2, 3, 4sbciedf 2998 1  |-  ( ph  ->  ( [. A  /  x ]. ps  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   [.wsbc 2962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-sbc 2963
This theorem is referenced by:  sbcied2  3000  sbc2iedv  3035  sbc3ie  3036  sbcralt  3039  sbcrext  3040  euotd  4254  riota5f  5854  issrg  13146
  Copyright terms: Public domain W3C validator