ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3ie Unicode version

Theorem sbc3ie 3102
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
sbc3ie.1  |-  A  e. 
_V
sbc3ie.2  |-  B  e. 
_V
sbc3ie.3  |-  C  e. 
_V
sbc3ie.4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
sbc3ie  |-  ( [. A  /  x ]. [. B  /  y ]. [. C  /  z ]. ph  <->  ps )
Distinct variable groups:    x, y, z, A    y, B, z   
z, C    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    B( x)    C( x, y)

Proof of Theorem sbc3ie
StepHypRef Expression
1 sbc3ie.1 . 2  |-  A  e. 
_V
2 sbc3ie.2 . 2  |-  B  e. 
_V
3 sbc3ie.3 . . . 4  |-  C  e. 
_V
43a1i 9 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  C  e.  _V )
5 sbc3ie.4 . . . 4  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
653expa 1227 . . 3  |-  ( ( ( x  =  A  /\  y  =  B )  /\  z  =  C )  ->  ( ph 
<->  ps ) )
74, 6sbcied 3065 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  ( [. C  / 
z ]. ph  <->  ps )
)
81, 2, 7sbc2ie 3100 1  |-  ( [. A  /  x ]. [. B  /  y ]. [. C  /  z ]. ph  <->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator