ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impl Unicode version

Theorem impl 380
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
impl.1  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
Assertion
Ref Expression
impl  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )

Proof of Theorem impl
StepHypRef Expression
1 impl.1 . . 3  |-  ( ph  ->  ( ( ps  /\  ch )  ->  th )
)
21expd 258 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
32imp31 256 1  |-  ( ( ( ph  /\  ps )  /\  ch )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  sbc2iedv  3036  csbie2t  3106  foco2  5755  erth  6579  distrlem1prl  7581  distrlem1pru  7582  uz11  9550  elpq  9648  divgcdcoprm0  12101  cncongr1  12103  prmpwdvds  12353  dfgrp3mlem  12968  efltlemlt  14198
  Copyright terms: Public domain W3C validator