ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3 Unicode version

Theorem dfoprab3 6277
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
dfoprab3  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Distinct variable groups:    x, y, ph    ps, w    x, z, w, y
Allowed substitution hints:    ph( z, w)    ps( x, y, z)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 6276 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ps }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }
2 vex 2775 . . . . . 6  |-  w  e. 
_V
3 1stexg 6253 . . . . . 6  |-  ( w  e.  _V  ->  ( 1st `  w )  e. 
_V )
42, 3ax-mp 5 . . . . 5  |-  ( 1st `  w )  e.  _V
5 2ndexg 6254 . . . . . 6  |-  ( w  e.  _V  ->  ( 2nd `  w )  e. 
_V )
62, 5ax-mp 5 . . . . 5  |-  ( 2nd `  w )  e.  _V
7 eqcom 2207 . . . . . . . . . 10  |-  ( x  =  ( 1st `  w
)  <->  ( 1st `  w
)  =  x )
8 eqcom 2207 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  w
)  <->  ( 2nd `  w
)  =  y )
97, 8anbi12i 460 . . . . . . . . 9  |-  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  <->  ( ( 1st `  w )  =  x  /\  ( 2nd `  w )  =  y ) )
10 eqopi 6258 . . . . . . . . 9  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
( 1st `  w
)  =  x  /\  ( 2nd `  w )  =  y ) )  ->  w  =  <. x ,  y >. )
119, 10sylan2b 287 . . . . . . . 8  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  ->  w  =  <. x ,  y >. )
12 dfoprab3.1 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( ph  <->  ps )
)
1311, 12syl 14 . . . . . . 7  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ph  <->  ps ) )
1413bicomd 141 . . . . . 6  |-  ( ( w  e.  ( _V 
X.  _V )  /\  (
x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) ) )  -> 
( ps  <->  ph ) )
1514ex 115 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  ->  ( ( x  =  ( 1st `  w )  /\  y  =  ( 2nd `  w
) )  ->  ( ps 
<-> 
ph ) ) )
164, 6, 15sbc2iedv 3071 . . . 4  |-  ( w  e.  ( _V  X.  _V )  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  / 
y ]. ps  <->  ph ) )
1716pm5.32i 454 . . 3  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps )  <->  ( w  e.  ( _V  X.  _V )  /\  ph ) )
1817opabbii 4111 . 2  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ps ) }  =  { <. w ,  z
>.  |  ( w  e.  ( _V  X.  _V )  /\  ph ) }
191, 18eqtr2i 2227 1  |-  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  ph ) }  =  { <. <. x ,  y
>. ,  z >.  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   [.wsbc 2998   <.cop 3636   {copab 4104    X. cxp 4673   ` cfv 5271   {coprab 5945   1stc1st 6224   2ndc2nd 6225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279  df-oprab 5948  df-1st 6226  df-2nd 6227
This theorem is referenced by:  dfoprab4  6278  df1st2  6305  df2nd2  6306
  Copyright terms: Public domain W3C validator