| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfoprab3.1 |
|
| Ref | Expression |
|---|---|
| dfoprab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3s 6276 |
. 2
| |
| 2 | vex 2775 |
. . . . . 6
| |
| 3 | 1stexg 6253 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | 2ndexg 6254 |
. . . . . 6
| |
| 6 | 2, 5 | ax-mp 5 |
. . . . 5
|
| 7 | eqcom 2207 |
. . . . . . . . . 10
| |
| 8 | eqcom 2207 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . . . 9
|
| 10 | eqopi 6258 |
. . . . . . . . 9
| |
| 11 | 9, 10 | sylan2b 287 |
. . . . . . . 8
|
| 12 | dfoprab3.1 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | bicomd 141 |
. . . . . 6
|
| 15 | 14 | ex 115 |
. . . . 5
|
| 16 | 4, 6, 15 | sbc2iedv 3071 |
. . . 4
|
| 17 | 16 | pm5.32i 454 |
. . 3
|
| 18 | 17 | opabbii 4111 |
. 2
|
| 19 | 1, 18 | eqtr2i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-oprab 5948 df-1st 6226 df-2nd 6227 |
| This theorem is referenced by: dfoprab4 6278 df1st2 6305 df2nd2 6306 |
| Copyright terms: Public domain | W3C validator |