| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfoprab3 | Unicode version | ||
| Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| dfoprab3.1 |
|
| Ref | Expression |
|---|---|
| dfoprab3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfoprab3s 6299 |
. 2
| |
| 2 | vex 2779 |
. . . . . 6
| |
| 3 | 1stexg 6276 |
. . . . . 6
| |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
|
| 5 | 2ndexg 6277 |
. . . . . 6
| |
| 6 | 2, 5 | ax-mp 5 |
. . . . 5
|
| 7 | eqcom 2209 |
. . . . . . . . . 10
| |
| 8 | eqcom 2209 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | anbi12i 460 |
. . . . . . . . 9
|
| 10 | eqopi 6281 |
. . . . . . . . 9
| |
| 11 | 9, 10 | sylan2b 287 |
. . . . . . . 8
|
| 12 | dfoprab3.1 |
. . . . . . . 8
| |
| 13 | 11, 12 | syl 14 |
. . . . . . 7
|
| 14 | 13 | bicomd 141 |
. . . . . 6
|
| 15 | 14 | ex 115 |
. . . . 5
|
| 16 | 4, 6, 15 | sbc2iedv 3078 |
. . . 4
|
| 17 | 16 | pm5.32i 454 |
. . 3
|
| 18 | 17 | opabbii 4127 |
. 2
|
| 19 | 1, 18 | eqtr2i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 df-oprab 5971 df-1st 6249 df-2nd 6250 |
| This theorem is referenced by: dfoprab4 6301 df1st2 6328 df2nd2 6329 |
| Copyright terms: Public domain | W3C validator |