![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbc3ie | GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbc3ie.1 | ⊢ 𝐴 ∈ V |
sbc3ie.2 | ⊢ 𝐵 ∈ V |
sbc3ie.3 | ⊢ 𝐶 ∈ V |
sbc3ie.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc3ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc3ie.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | sbc3ie.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 9 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 ∈ V) |
5 | sbc3ie.4 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
6 | 5 | 3expa 1205 | . . 3 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | sbcied 3022 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ([𝐶 / 𝑧]𝜑 ↔ 𝜓)) |
8 | 1, 2, 7 | sbc2ie 3057 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 [wsbc 2985 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-sbc 2986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |