ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc3ie GIF version

Theorem sbc3ie 3036
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
sbc3ie.1 𝐴 ∈ V
sbc3ie.2 𝐵 ∈ V
sbc3ie.3 𝐶 ∈ V
sbc3ie.4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
Assertion
Ref Expression
sbc3ie ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑦,𝐵,𝑧   𝑧,𝐶   𝜓,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐵(𝑥)   𝐶(𝑥,𝑦)

Proof of Theorem sbc3ie
StepHypRef Expression
1 sbc3ie.1 . 2 𝐴 ∈ V
2 sbc3ie.2 . 2 𝐵 ∈ V
3 sbc3ie.3 . . . 4 𝐶 ∈ V
43a1i 9 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝐶 ∈ V)
5 sbc3ie.4 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))
653expa 1203 . . 3 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑𝜓))
74, 6sbcied 2999 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → ([𝐶 / 𝑧]𝜑𝜓))
81, 2, 7sbc2ie 3034 1 ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  Vcvv 2737  [wsbc 2962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-sbc 2963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator