ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel1g Unicode version

Theorem sbcel1g 3068
Description: Move proper substitution in and out of a membership relation. Note that the scope of  [. A  /  x ]. is the wff  B  e.  C, whereas the scope of  [_ A  /  x ]_ is the class  B. (Contributed by NM, 10-Nov-2005.)
Assertion
Ref Expression
sbcel1g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  C )
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    V( x)

Proof of Theorem sbcel1g
StepHypRef Expression
1 sbcel12g 3064 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
2 csbconstg 3063 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ C  =  C )
32eleq2d 2240 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  e.  C
) )
41, 3bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2141   [.wsbc 2955   [_csb 3049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050
This theorem is referenced by:  rspcsbela  3108  fprodcllemf  11576
  Copyright terms: Public domain W3C validator