ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodcllemf Unicode version

Theorem fprodcllemf 11957
Description: Finite product closure lemma. A version of fprodcllem 11950 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodcllemf.ph  |-  F/ k
ph
fprodcllemf.s  |-  ( ph  ->  S  C_  CC )
fprodcllemf.xy  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
fprodcllemf.a  |-  ( ph  ->  A  e.  Fin )
fprodcllemf.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fprodcllemf.1  |-  ( ph  ->  1  e.  S )
Assertion
Ref Expression
fprodcllemf  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Distinct variable groups:    A, k, x, y    x, B, y    S, k, x, y    ph, x, y
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem fprodcllemf
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 nfcv 2348 . . 3  |-  F/_ j B
2 nfcsb1v 3126 . . 3  |-  F/_ k [_ j  /  k ]_ B
3 csbeq1a 3102 . . 3  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
41, 2, 3cbvprodi 11904 . 2  |-  prod_ k  e.  A  B  =  prod_ j  e.  A  [_ j  /  k ]_ B
5 fprodcllemf.s . . 3  |-  ( ph  ->  S  C_  CC )
6 fprodcllemf.xy . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  x.  y
)  e.  S )
7 fprodcllemf.a . . 3  |-  ( ph  ->  A  e.  Fin )
8 fprodcllemf.ph . . . . . 6  |-  F/ k
ph
9 fprodcllemf.b . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
109ex 115 . . . . . 6  |-  ( ph  ->  ( k  e.  A  ->  B  e.  S ) )
118, 10ralrimi 2577 . . . . 5  |-  ( ph  ->  A. k  e.  A  B  e.  S )
12 rspsbc 3081 . . . . 5  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  S  ->  [. j  /  k ]. B  e.  S )
)
1311, 12mpan9 281 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  [. j  /  k ]. B  e.  S )
14 sbcel1g 3112 . . . . 5  |-  ( j  e.  _V  ->  ( [. j  /  k ]. B  e.  S  <->  [_ j  /  k ]_ B  e.  S )
)
1514elv 2776 . . . 4  |-  ( [. j  /  k ]. B  e.  S  <->  [_ j  /  k ]_ B  e.  S
)
1613, 15sylib 122 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  S )
17 fprodcllemf.1 . . 3  |-  ( ph  ->  1  e.  S )
185, 6, 7, 16, 17fprodcllem 11950 . 2  |-  ( ph  ->  prod_ j  e.  A  [_ j  /  k ]_ B  e.  S )
194, 18eqeltrid 2292 1  |-  ( ph  ->  prod_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   F/wnf 1483    e. wcel 2176   A.wral 2484   _Vcvv 2772   [.wsbc 2998   [_csb 3093    C_ wss 3166  (class class class)co 5946   Fincfn 6829   CCcc 7925   1c1 7928    x. cmul 7932   prod_cprod 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-proddc 11895
This theorem is referenced by:  fprodreclf  11958  fprodclf  11979  fprodge0  11981  fprodge1  11983
  Copyright terms: Public domain W3C validator