ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbconstg Unicode version

Theorem csbconstg 3073
Description: Substitution doesn't affect a constant  B (in which  x is not free). csbconstgf 3072 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbconstg  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem csbconstg
StepHypRef Expression
1 nfcv 2319 . 2  |-  F/_ x B
21csbconstgf 3072 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   [_csb 3059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-sbc 2965  df-csb 3060
This theorem is referenced by:  sbcel1g  3078  sbceq1g  3079  sbcel2g  3080  sbceq2g  3081  csbidmg  3115  sbcbr12g  4060  sbcbr1g  4061  sbcbr2g  4062  sbcrel  4714  csbcnvg  4813  csbresg  4912  sbcfung  5242  csbfv12g  5554  csbfv2g  5555  elfvmptrab  5614  csbov12g  5917  csbov1g  5918  csbov2g  5919
  Copyright terms: Public domain W3C validator