ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  csbconstg Unicode version

Theorem csbconstg 3098
Description: Substitution doesn't affect a constant  B (in which  x is not free). csbconstgf 3097 with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012.)
Assertion
Ref Expression
csbconstg  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    V( x)

Proof of Theorem csbconstg
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x B
21csbconstgf 3097 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   [_csb 3084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-csb 3085
This theorem is referenced by:  sbcel1g  3103  sbceq1g  3104  sbcel2g  3105  sbceq2g  3106  csbidmg  3141  sbcbr12g  4089  sbcbr1g  4090  sbcbr2g  4091  sbcrel  4750  csbcnvg  4851  csbresg  4950  sbcfung  5283  csbfv12g  5599  csbfv2g  5600  elfvmptrab  5660  csbov12g  5965  csbov1g  5966  csbov2g  5967  csbwrdg  10981
  Copyright terms: Public domain W3C validator