ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcne12g Unicode version

Theorem sbcne12g 3087
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcne12g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )

Proof of Theorem sbcne12g
StepHypRef Expression
1 sbceqg 3085 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
21notbid 668 . 2  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  =  C  <->  -. 
[_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
3 df-ne 2358 . . . . 5  |-  ( B  =/=  C  <->  -.  B  =  C )
43sbcbii 3034 . . . 4  |-  ( [. A  /  x ]. B  =/=  C  <->  [. A  /  x ].  -.  B  =  C )
5 sbcng 3015 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  B  =  C  <->  -.  [. A  /  x ]. B  =  C
) )
64, 5bitrid 192 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  -. 
[. A  /  x ]. B  =  C
) )
7 df-ne 2358 . . . 4  |-  ( [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
)
87a1i 9 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C ) )
96, 8bibi12d 235 . 2  |-  ( A  e.  V  ->  (
( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )  <->  ( -.  [. A  /  x ]. B  =  C  <->  -.  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C ) ) )
102, 9mpbird 167 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1363    e. wcel 2158    =/= wne 2357   [.wsbc 2974   [_csb 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-v 2751  df-sbc 2975  df-csb 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator