ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcne12g Unicode version

Theorem sbcne12g 3073
Description: Distribute proper substitution through an inequality. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcne12g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )

Proof of Theorem sbcne12g
StepHypRef Expression
1 sbceqg 3071 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
21notbid 667 . 2  |-  ( A  e.  V  ->  ( -.  [. A  /  x ]. B  =  C  <->  -. 
[_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
3 df-ne 2346 . . . . 5  |-  ( B  =/=  C  <->  -.  B  =  C )
43sbcbii 3020 . . . 4  |-  ( [. A  /  x ]. B  =/=  C  <->  [. A  /  x ].  -.  B  =  C )
5 sbcng 3001 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  B  =  C  <->  -.  [. A  /  x ]. B  =  C
) )
64, 5bitrid 192 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  -. 
[. A  /  x ]. B  =  C
) )
7 df-ne 2346 . . . 4  |-  ( [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C
)
87a1i 9 . . 3  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C  <->  -.  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C ) )
96, 8bibi12d 235 . 2  |-  ( A  e.  V  ->  (
( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C )  <->  ( -.  [. A  /  x ]. B  =  C  <->  -.  [_ A  /  x ]_ B  = 
[_ A  /  x ]_ C ) ) )
102, 9mpbird 167 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =/=  C  <->  [_ A  /  x ]_ B  =/=  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146    =/= wne 2345   [.wsbc 2960   [_csb 3055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-v 2737  df-sbc 2961  df-csb 3056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator