ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1g Unicode version

Theorem sbceq1g 3051
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    V( x)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 3047 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
2 csbconstg 3045 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ C  =  C )
32eqeq2d 2169 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  =  C ) )
41, 3bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    e. wcel 2128   [.wsbc 2937   [_csb 3031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-sbc 2938  df-csb 3032
This theorem is referenced by:  f1od2  6179
  Copyright terms: Public domain W3C validator