ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1g Unicode version

Theorem sbceq1g 3121
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    V( x)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 3117 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
2 csbconstg 3115 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ C  =  C )
32eqeq2d 2219 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  =  C ) )
41, 3bitrd 188 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   [.wsbc 3005   [_csb 3101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006  df-csb 3102
This theorem is referenced by:  f1od2  6344
  Copyright terms: Public domain W3C validator