ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceq1g Unicode version

Theorem sbceq1g 3113
Description: Move proper substitution to first argument of an equality. (Contributed by NM, 30-Nov-2005.)
Assertion
Ref Expression
sbceq1g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Distinct variable group:    x, C
Allowed substitution hints:    A( x)    B( x)    V( x)

Proof of Theorem sbceq1g
StepHypRef Expression
1 sbceqg 3109 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  [_ A  /  x ]_ C ) )
2 csbconstg 3107 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ C  =  C )
32eqeq2d 2217 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  =  [_ A  /  x ]_ C  <->  [_ A  /  x ]_ B  =  C ) )
41, 3bitrd 188 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  C  <->  [_ A  /  x ]_ B  =  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   [.wsbc 2998   [_csb 3093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-sbc 2999  df-csb 3094
This theorem is referenced by:  f1od2  6321
  Copyright terms: Public domain W3C validator