ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2g Unicode version

Theorem sbcel2g 3113
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
sbcel2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem sbcel2g
StepHypRef Expression
1 sbcel12g 3107 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
2 csbconstg 3106 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
32eleq1d 2273 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  B  e.  [_ A  /  x ]_ C ) )
41, 3bitrd 188 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2175   [.wsbc 2997   [_csb 3092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998  df-csb 3093
This theorem is referenced by:  csbcomg  3115  sbccsbg  3121  sbnfc2  3153  csbabg  3154  sbcssg  3568  csbunig  3857  csbxpg  4755  csbdmg  4871  csbrng  5143  bj-sels  15783
  Copyright terms: Public domain W3C validator