ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2g Unicode version

Theorem sbcel2g 3023
Description: Move proper substitution in and out of a membership relation. (Contributed by NM, 14-Nov-2005.)
Assertion
Ref Expression
sbcel2g  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)    V( x)

Proof of Theorem sbcel2g
StepHypRef Expression
1 sbcel12g 3017 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C ) )
2 csbconstg 3016 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ B  =  B )
32eleq1d 2208 . 2  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ B  e.  [_ A  /  x ]_ C  <->  B  e.  [_ A  /  x ]_ C ) )
41, 3bitrd 187 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  e.  C  <->  B  e.  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 1480   [.wsbc 2909   [_csb 3003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910  df-csb 3004
This theorem is referenced by:  csbcomg  3025  sbccsbg  3031  sbnfc2  3060  csbabg  3061  sbcssg  3472  csbunig  3744  csbxpg  4620  csbdmg  4733  csbrng  5000  bj-sels  13126
  Copyright terms: Public domain W3C validator