| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcocom | GIF version | ||
| Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbcocom | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb1 1809 | . . 3 ⊢ [𝑧 / 𝑦]𝑦 = 𝑧 | |
| 2 | sbequ 1864 | . . . 4 ⊢ (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 3 | 2 | sbimi 1788 | . . 3 ⊢ ([𝑧 / 𝑦]𝑦 = 𝑧 → [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 4 | 1, 3 | ax-mp 5 | . 2 ⊢ [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
| 5 | sbbi 1988 | . 2 ⊢ ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)) | |
| 6 | 4, 5 | mpbi 145 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 |
| This theorem is referenced by: sbcomv 2000 sbco3xzyz 2002 sbcom 2004 |
| Copyright terms: Public domain | W3C validator |