ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcocom GIF version

Theorem sbcocom 1982
Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcocom ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)

Proof of Theorem sbcocom
StepHypRef Expression
1 equsb1 1796 . . 3 [𝑧 / 𝑦]𝑦 = 𝑧
2 sbequ 1851 . . . 4 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
32sbimi 1775 . . 3 ([𝑧 / 𝑦]𝑦 = 𝑧 → [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
41, 3ax-mp 5 . 2 [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
5 sbbi 1971 . 2 ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑))
64, 5mpbi 145 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  sbcomv  1983  sbco3xzyz  1985  sbcom  1987
  Copyright terms: Public domain W3C validator