ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcocom GIF version

Theorem sbcocom 2021
Description: Relationship between composition and commutativity for substitution. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcocom ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)

Proof of Theorem sbcocom
StepHypRef Expression
1 equsb1 1831 . . 3 [𝑧 / 𝑦]𝑦 = 𝑧
2 sbequ 1886 . . . 4 (𝑦 = 𝑧 → ([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
32sbimi 1810 . . 3 ([𝑧 / 𝑦]𝑦 = 𝑧 → [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑))
41, 3ax-mp 5 . 2 [𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)
5 sbbi 2010 . 2 ([𝑧 / 𝑦]([𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑))
64, 5mpbi 145 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sbcomv  2022  sbco3xzyz  2024  sbcom  2026
  Copyright terms: Public domain W3C validator