ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvopab Unicode version

Theorem cnvopab 5085
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem cnvopab
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5061 . 2  |-  Rel  `' { <. x ,  y
>.  |  ph }
2 relopab 4805 . 2  |-  Rel  { <. y ,  x >.  | 
ph }
3 opelopabsbALT 4306 . . . 4  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ z  /  y ] [
w  /  x ] ph )
4 sbcom2 2015 . . . 4  |-  ( [ z  /  y ] [ w  /  x ] ph  <->  [ w  /  x ] [ z  /  y ] ph )
53, 4bitri 184 . . 3  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
6 vex 2775 . . . 4  |-  z  e. 
_V
7 vex 2775 . . . 4  |-  w  e. 
_V
86, 7opelcnv 4861 . . 3  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. w ,  z >.  e.  { <. x ,  y >.  |  ph } )
9 opelopabsbALT 4306 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. y ,  x >.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
105, 8, 93bitr4i 212 . 2  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. z ,  w >.  e.  { <. y ,  x >.  |  ph } )
111, 2, 10eqrelriiv 4770 1  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   [wsb 1785    e. wcel 2176   <.cop 3636   {copab 4105   `'ccnv 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684
This theorem is referenced by:  mptcnv  5086  cnvxp  5102  mptpreima  5177  f1ocnvd  6150  cnvoprab  6322  mapsncnv  6784  lgsquadlem3  15589
  Copyright terms: Public domain W3C validator