ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvopab Unicode version

Theorem cnvopab 5005
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem cnvopab
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 4982 . 2  |-  Rel  `' { <. x ,  y
>.  |  ph }
2 relopab 4731 . 2  |-  Rel  { <. y ,  x >.  | 
ph }
3 opelopabsbALT 4237 . . . 4  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ z  /  y ] [
w  /  x ] ph )
4 sbcom2 1975 . . . 4  |-  ( [ z  /  y ] [ w  /  x ] ph  <->  [ w  /  x ] [ z  /  y ] ph )
53, 4bitri 183 . . 3  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
6 vex 2729 . . . 4  |-  z  e. 
_V
7 vex 2729 . . . 4  |-  w  e. 
_V
86, 7opelcnv 4786 . . 3  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. w ,  z >.  e.  { <. x ,  y >.  |  ph } )
9 opelopabsbALT 4237 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. y ,  x >.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
105, 8, 93bitr4i 211 . 2  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. z ,  w >.  e.  { <. y ,  x >.  |  ph } )
111, 2, 10eqrelriiv 4698 1  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   [wsb 1750    e. wcel 2136   <.cop 3579   {copab 4042   `'ccnv 4603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  mptcnv  5006  cnvxp  5022  mptpreima  5097  f1ocnvd  6040  cnvoprab  6202  mapsncnv  6661
  Copyright terms: Public domain W3C validator