ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvopab Unicode version

Theorem cnvopab 5103
Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvopab  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem cnvopab
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5079 . 2  |-  Rel  `' { <. x ,  y
>.  |  ph }
2 relopab 4822 . 2  |-  Rel  { <. y ,  x >.  | 
ph }
3 opelopabsbALT 4323 . . . 4  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ z  /  y ] [
w  /  x ] ph )
4 sbcom2 2016 . . . 4  |-  ( [ z  /  y ] [ w  /  x ] ph  <->  [ w  /  x ] [ z  /  y ] ph )
53, 4bitri 184 . . 3  |-  ( <.
w ,  z >.  e.  { <. x ,  y
>.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
6 vex 2779 . . . 4  |-  z  e. 
_V
7 vex 2779 . . . 4  |-  w  e. 
_V
86, 7opelcnv 4878 . . 3  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. w ,  z >.  e.  { <. x ,  y >.  |  ph } )
9 opelopabsbALT 4323 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. y ,  x >.  |  ph }  <->  [ w  /  x ] [ z  /  y ] ph )
105, 8, 93bitr4i 212 . 2  |-  ( <.
z ,  w >.  e.  `' { <. x ,  y
>.  |  ph }  <->  <. z ,  w >.  e.  { <. y ,  x >.  |  ph } )
111, 2, 10eqrelriiv 4787 1  |-  `' { <. x ,  y >.  |  ph }  =  { <. y ,  x >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    = wceq 1373   [wsb 1786    e. wcel 2178   <.cop 3646   {copab 4120   `'ccnv 4692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701
This theorem is referenced by:  mptcnv  5104  cnvxp  5120  mptpreima  5195  f1ocnvd  6171  cnvoprab  6343  mapsncnv  6805  lgsquadlem3  15671
  Copyright terms: Public domain W3C validator