| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvopab | Unicode version | ||
| Description: The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5061 |
. 2
| |
| 2 | relopab 4805 |
. 2
| |
| 3 | opelopabsbALT 4306 |
. . . 4
| |
| 4 | sbcom2 2015 |
. . . 4
| |
| 5 | 3, 4 | bitri 184 |
. . 3
|
| 6 | vex 2775 |
. . . 4
| |
| 7 | vex 2775 |
. . . 4
| |
| 8 | 6, 7 | opelcnv 4861 |
. . 3
|
| 9 | opelopabsbALT 4306 |
. . 3
| |
| 10 | 5, 8, 9 | 3bitr4i 212 |
. 2
|
| 11 | 1, 2, 10 | eqrelriiv 4770 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 |
| This theorem is referenced by: mptcnv 5086 cnvxp 5102 mptpreima 5177 f1ocnvd 6150 cnvoprab 6322 mapsncnv 6784 lgsquadlem3 15589 |
| Copyright terms: Public domain | W3C validator |