| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcom2 | GIF version | ||
| Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbcom2 | ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2v2 2005 | . . . 4 ⊢ ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑧]𝜑) | |
| 2 | 1 | sbbii 1779 | . . 3 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑) |
| 3 | sbcom2v2 2005 | . . 3 ⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑) |
| 5 | ax-17 1540 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑣[𝑦 / 𝑥]𝜑) | |
| 6 | 5 | sbco2vh 1964 | . 2 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) |
| 7 | ax-17 1540 | . . . 4 ⊢ (𝜑 → ∀𝑣𝜑) | |
| 8 | 7 | sbco2vh 1964 | . . 3 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑) |
| 9 | 8 | sbbii 1779 | . 2 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| 10 | 4, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: 2sb5rf 2008 2sb6rf 2009 sbco4lem 2025 sbco4 2026 sbmo 2104 cnvopab 5071 |
| Copyright terms: Public domain | W3C validator |