ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2 GIF version

Theorem sbcom2 1975
Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑥,𝑤   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem sbcom2
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 sbcom2v2 1974 . . . 4 ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑧]𝜑)
21sbbii 1753 . . 3 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑)
3 sbcom2v2 1974 . . 3 ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑)
42, 3bitri 183 . 2 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑)
5 ax-17 1514 . . 3 ([𝑦 / 𝑥]𝜑 → ∀𝑣[𝑦 / 𝑥]𝜑)
65sbco2vh 1933 . 2 ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)
7 ax-17 1514 . . . 4 (𝜑 → ∀𝑣𝜑)
87sbco2vh 1933 . . 3 ([𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)
98sbbii 1753 . 2 ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
104, 6, 93bitr3i 209 1 ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  2sb5rf  1977  2sb6rf  1978  sbco4lem  1994  sbco4  1995  sbmo  2073  cnvopab  5005
  Copyright terms: Public domain W3C validator