| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcom2 | GIF version | ||
| Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbcom2 | ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcom2v2 2017 | . . . 4 ⊢ ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑣 / 𝑧]𝜑) | |
| 2 | 1 | sbbii 1791 | . . 3 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑) |
| 3 | sbcom2v2 2017 | . . 3 ⊢ ([𝑤 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑) |
| 5 | ax-17 1552 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑣[𝑦 / 𝑥]𝜑) | |
| 6 | 5 | sbco2vh 1976 | . 2 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑) |
| 7 | ax-17 1552 | . . . 4 ⊢ (𝜑 → ∀𝑣𝜑) | |
| 8 | 7 | sbco2vh 1976 | . . 3 ⊢ ([𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑) |
| 9 | 8 | sbbii 1791 | . 2 ⊢ ([𝑦 / 𝑥][𝑤 / 𝑣][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| 10 | 4, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 |
| This theorem is referenced by: 2sb5rf 2020 2sb6rf 2021 sbco4lem 2037 sbco4 2038 sbmo 2117 cnvopab 5106 |
| Copyright terms: Public domain | W3C validator |