| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbex | GIF version | ||
| Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.) |
| Ref | Expression |
|---|---|
| sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbexyz 2034 | . . . 4 ⊢ ([𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑤 / 𝑦]𝜑) | |
| 2 | 1 | sbbii 1791 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑) |
| 3 | sbexyz 2034 | . . 3 ⊢ ([𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) |
| 5 | ax-17 1552 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑤∃𝑥𝜑) | |
| 6 | 5 | sbco2vh 1976 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦]∃𝑥𝜑) |
| 7 | ax-17 1552 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
| 8 | 7 | sbco2vh 1976 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
| 9 | 8 | exbii 1631 | . 2 ⊢ (∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| 10 | 4, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∃wex 1518 [wsb 1788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 |
| This theorem is referenced by: sbabel 2379 sbcex2 3062 sbcexg 3063 |
| Copyright terms: Public domain | W3C validator |