Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbex | GIF version |
Description: Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.) |
Ref | Expression |
---|---|
sbex | ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbexyz 2001 | . . . 4 ⊢ ([𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑤 / 𝑦]𝜑) | |
2 | 1 | sbbii 1763 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑) |
3 | sbexyz 2001 | . . 3 ⊢ ([𝑧 / 𝑤]∃𝑥[𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) | |
4 | 2, 3 | bitri 184 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑) |
5 | ax-17 1524 | . . 3 ⊢ (∃𝑥𝜑 → ∀𝑤∃𝑥𝜑) | |
6 | 5 | sbco2vh 1943 | . 2 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]∃𝑥𝜑 ↔ [𝑧 / 𝑦]∃𝑥𝜑) |
7 | ax-17 1524 | . . . 4 ⊢ (𝜑 → ∀𝑤𝜑) | |
8 | 7 | sbco2vh 1943 | . . 3 ⊢ ([𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) |
9 | 8 | exbii 1603 | . 2 ⊢ (∃𝑥[𝑧 / 𝑤][𝑤 / 𝑦]𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
10 | 4, 6, 9 | 3bitr3i 210 | 1 ⊢ ([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1490 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: sbabel 2344 sbcex2 3014 sbcexg 3015 |
Copyright terms: Public domain | W3C validator |