ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcex2 Unicode version

Theorem sbcex2 2914
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcex2  |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
Distinct variable groups:    x, A    x, y
Allowed substitution hints:    ph( x, y)    A( y)

Proof of Theorem sbcex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 2870 . 2  |-  ( [. A  /  y ]. E. x ph  ->  A  e.  _V )
2 sbcex 2870 . . 3  |-  ( [. A  /  y ]. ph  ->  A  e.  _V )
32exlimiv 1545 . 2  |-  ( E. x [. A  / 
y ]. ph  ->  A  e.  _V )
4 dfsbcq2 2865 . . 3  |-  ( z  =  A  ->  ( [ z  /  y ] E. x ph  <->  [. A  / 
y ]. E. x ph ) )
5 dfsbcq2 2865 . . . 4  |-  ( z  =  A  ->  ( [ z  /  y ] ph  <->  [. A  /  y ]. ph ) )
65exbidv 1764 . . 3  |-  ( z  =  A  ->  ( E. x [ z  / 
y ] ph  <->  E. x [. A  /  y ]. ph ) )
7 sbex 1940 . . 3  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
84, 6, 7vtoclbg 2702 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph ) )
91, 3, 8pm5.21nii 661 1  |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1299   E.wex 1436    e. wcel 1448   [wsb 1703   _Vcvv 2641   [.wsbc 2862
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-sbc 2863
This theorem is referenced by:  csbdmg  4671
  Copyright terms: Public domain W3C validator