ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcex2 Unicode version

Theorem sbcex2 3059
Description: Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
Assertion
Ref Expression
sbcex2  |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
Distinct variable groups:    x, A    x, y
Allowed substitution hints:    ph( x, y)    A( y)

Proof of Theorem sbcex2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 3014 . 2  |-  ( [. A  /  y ]. E. x ph  ->  A  e.  _V )
2 sbcex 3014 . . 3  |-  ( [. A  /  y ]. ph  ->  A  e.  _V )
32exlimiv 1622 . 2  |-  ( E. x [. A  / 
y ]. ph  ->  A  e.  _V )
4 dfsbcq2 3008 . . 3  |-  ( z  =  A  ->  ( [ z  /  y ] E. x ph  <->  [. A  / 
y ]. E. x ph ) )
5 dfsbcq2 3008 . . . 4  |-  ( z  =  A  ->  ( [ z  /  y ] ph  <->  [. A  /  y ]. ph ) )
65exbidv 1849 . . 3  |-  ( z  =  A  ->  ( E. x [ z  / 
y ] ph  <->  E. x [. A  /  y ]. ph ) )
7 sbex 2033 . . 3  |-  ( [ z  /  y ] E. x ph  <->  E. x [ z  /  y ] ph )
84, 6, 7vtoclbg 2839 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph ) )
91, 3, 8pm5.21nii 706 1  |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   E.wex 1516   [wsb 1786    e. wcel 2178   _Vcvv 2776   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006
This theorem is referenced by:  csbdmg  4891
  Copyright terms: Public domain W3C validator