ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcssg Unicode version

Theorem sbcssg 3573
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )

Proof of Theorem sbcssg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcalg 3055 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C )  <->  A. y [. A  /  x ]. ( y  e.  B  ->  y  e.  C ) ) )
2 sbcimg 3044 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <-> 
( [. A  /  x ]. y  e.  B  ->  [. A  /  x ]. y  e.  C
) ) )
3 sbcel2g 3118 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
4 sbcel2g 3118 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
53, 4imbi12d 234 . . . . 5  |-  ( A  e.  V  ->  (
( [. A  /  x ]. y  e.  B  ->  [. A  /  x ]. y  e.  C
)  <->  ( y  e. 
[_ A  /  x ]_ B  ->  y  e. 
[_ A  /  x ]_ C ) ) )
62, 5bitrd 188 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <-> 
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
76albidv 1848 . . 3  |-  ( A  e.  V  ->  ( A. y [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <->  A. y
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
81, 7bitrd 188 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C )  <->  A. y
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
9 ssalel 3185 . . 3  |-  ( B 
C_  C  <->  A. y
( y  e.  B  ->  y  e.  C ) )
109sbcbii 3062 . 2  |-  ( [. A  /  x ]. B  C_  C  <->  [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C ) )
11 ssalel 3185 . 2  |-  ( [_ A  /  x ]_ B  C_ 
[_ A  /  x ]_ C  <->  A. y ( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) )
128, 10, 113bitr4g 223 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2177   [.wsbc 3002   [_csb 3097    C_ wss 3170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-sbc 3003  df-csb 3098  df-in 3176  df-ss 3183
This theorem is referenced by:  sbcrel  4769  sbcfg  5434
  Copyright terms: Public domain W3C validator