ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcssg Unicode version

Theorem sbcssg 3524
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )

Proof of Theorem sbcssg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcalg 3007 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C )  <->  A. y [. A  /  x ]. ( y  e.  B  ->  y  e.  C ) ) )
2 sbcimg 2996 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <-> 
( [. A  /  x ]. y  e.  B  ->  [. A  /  x ]. y  e.  C
) ) )
3 sbcel2g 3070 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  B  <->  y  e.  [_ A  /  x ]_ B ) )
4 sbcel2g 3070 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  C  <->  y  e.  [_ A  /  x ]_ C ) )
53, 4imbi12d 233 . . . . 5  |-  ( A  e.  V  ->  (
( [. A  /  x ]. y  e.  B  ->  [. A  /  x ]. y  e.  C
)  <->  ( y  e. 
[_ A  /  x ]_ B  ->  y  e. 
[_ A  /  x ]_ C ) ) )
62, 5bitrd 187 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <-> 
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
76albidv 1817 . . 3  |-  ( A  e.  V  ->  ( A. y [. A  /  x ]. ( y  e.  B  ->  y  e.  C )  <->  A. y
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
81, 7bitrd 187 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C )  <->  A. y
( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) ) )
9 dfss2 3136 . . 3  |-  ( B 
C_  C  <->  A. y
( y  e.  B  ->  y  e.  C ) )
109sbcbii 3014 . 2  |-  ( [. A  /  x ]. B  C_  C  <->  [. A  /  x ]. A. y ( y  e.  B  ->  y  e.  C ) )
11 dfss2 3136 . 2  |-  ( [_ A  /  x ]_ B  C_ 
[_ A  /  x ]_ C  <->  A. y ( y  e.  [_ A  /  x ]_ B  ->  y  e.  [_ A  /  x ]_ C ) )
128, 10, 113bitr4g 222 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. B  C_  C  <->  [_ A  /  x ]_ B  C_  [_ A  /  x ]_ C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346    e. wcel 2141   [.wsbc 2955   [_csb 3049    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-sbc 2956  df-csb 3050  df-in 3127  df-ss 3134
This theorem is referenced by:  sbcrel  4697  sbcfg  5346
  Copyright terms: Public domain W3C validator