ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 Unicode version

Theorem setind2 4524
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2  |-  ( ~P A  C_  A  ->  A  =  _V )

Proof of Theorem setind2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwss 3582 . 2  |-  ( ~P A  C_  A  <->  A. x
( x  C_  A  ->  x  e.  A ) )
2 setind 4523 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
31, 2sylbi 120 1  |-  ( ~P A  C_  A  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator