ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 Unicode version

Theorem setind2 4576
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2  |-  ( ~P A  C_  A  ->  A  =  _V )

Proof of Theorem setind2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwss 3621 . 2  |-  ( ~P A  C_  A  <->  A. x
( x  C_  A  ->  x  e.  A ) )
2 setind 4575 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
31, 2sylbi 121 1  |-  ( ~P A  C_  A  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator