ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 Unicode version

Theorem setind2 4631
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2  |-  ( ~P A  C_  A  ->  A  =  _V )

Proof of Theorem setind2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwss 3665 . 2  |-  ( ~P A  C_  A  <->  A. x
( x  C_  A  ->  x  e.  A ) )
2 setind 4630 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
31, 2sylbi 121 1  |-  ( ~P A  C_  A  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator