ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 Unicode version

Theorem setind2 4369
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2  |-  ( ~P A  C_  A  ->  A  =  _V )

Proof of Theorem setind2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pwss 3449 . 2  |-  ( ~P A  C_  A  <->  A. x
( x  C_  A  ->  x  e.  A ) )
2 setind 4368 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
31, 2sylbi 120 1  |-  ( ~P A  C_  A  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1288    = wceq 1290    e. wcel 1439   _Vcvv 2620    C_ wss 3000   ~Pcpw 3433
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-ral 2365  df-v 2622  df-in 3006  df-ss 3013  df-pw 3435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator