ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind Unicode version

Theorem setind 4383
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Distinct variable group:    x, A

Proof of Theorem setind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3028 . . . 4  |-  ( x 
C_  A  <->  A. y
( y  e.  x  ->  y  e.  A ) )
21imbi1i 237 . . 3  |-  ( ( x  C_  A  ->  x  e.  A )  <->  ( A. y ( y  e.  x  ->  y  e.  A )  ->  x  e.  A ) )
32albii 1411 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  <->  A. x ( A. y ( y  e.  x  ->  y  e.  A )  ->  x  e.  A ) )
4 setindel 4382 . 2  |-  ( A. x ( A. y
( y  e.  x  ->  y  e.  A )  ->  x  e.  A
)  ->  A  =  _V )
53, 4sylbi 120 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1294    = wceq 1296    e. wcel 1445   _Vcvv 2633    C_ wss 3013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-setind 4381
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-ral 2375  df-v 2635  df-in 3019  df-ss 3026
This theorem is referenced by:  setind2  4384
  Copyright terms: Public domain W3C validator