ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind Unicode version

Theorem setind 4571
Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Distinct variable group:    x, A

Proof of Theorem setind
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss2 3168 . . . 4  |-  ( x 
C_  A  <->  A. y
( y  e.  x  ->  y  e.  A ) )
21imbi1i 238 . . 3  |-  ( ( x  C_  A  ->  x  e.  A )  <->  ( A. y ( y  e.  x  ->  y  e.  A )  ->  x  e.  A ) )
32albii 1481 . 2  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  <->  A. x ( A. y ( y  e.  x  ->  y  e.  A )  ->  x  e.  A ) )
4 setindel 4570 . 2  |-  ( A. x ( A. y
( y  e.  x  ->  y  e.  A )  ->  x  e.  A
)  ->  A  =  _V )
53, 4sylbi 121 1  |-  ( A. x ( x  C_  A  ->  x  e.  A
)  ->  A  =  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166
This theorem is referenced by:  setind2  4572
  Copyright terms: Public domain W3C validator