| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setind | Unicode version | ||
| Description: Set (epsilon) induction. Theorem 5.22 of [TakeutiZaring] p. 21. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| setind |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssalel 3180 |
. . . 4
| |
| 2 | 1 | imbi1i 238 |
. . 3
|
| 3 | 2 | albii 1492 |
. 2
|
| 4 | setindel 4584 |
. 2
| |
| 5 | 3, 4 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 |
| This theorem is referenced by: setind2 4586 |
| Copyright terms: Public domain | W3C validator |