ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 GIF version

Theorem setind2 4517
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2 (𝒫 𝐴𝐴𝐴 = V)

Proof of Theorem setind2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwss 3575 . 2 (𝒫 𝐴𝐴 ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
2 setind 4516 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
31, 2sylbi 120 1 (𝒫 𝐴𝐴𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator