Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setind2 | GIF version |
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
setind2 | ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwss 3575 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) | |
2 | setind 4516 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
3 | 1, 2 | sylbi 120 | 1 ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 = wceq 1343 ∈ wcel 2136 Vcvv 2726 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |