ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 GIF version

Theorem setind2 4592
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2 (𝒫 𝐴𝐴𝐴 = V)

Proof of Theorem setind2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwss 3633 . 2 (𝒫 𝐴𝐴 ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
2 setind 4591 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
31, 2sylbi 121 1 (𝒫 𝐴𝐴𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4589
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-ral 2490  df-v 2775  df-in 3173  df-ss 3180  df-pw 3619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator