ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setind2 GIF version

Theorem setind2 4609
Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
setind2 (𝒫 𝐴𝐴𝐴 = V)

Proof of Theorem setind2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwss 3645 . 2 (𝒫 𝐴𝐴 ↔ ∀𝑥(𝑥𝐴𝑥𝐴))
2 setind 4608 . 2 (∀𝑥(𝑥𝐴𝑥𝐴) → 𝐴 = V)
31, 2sylbi 121 1 (𝒫 𝐴𝐴𝐴 = V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177  𝒫 cpw 3629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191  ax-setind 4606
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator