| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setind2 | GIF version | ||
| Description: Set (epsilon) induction, stated compactly. Given as a homework problem in 1992 by George Boolos (1940-1996). (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| setind2 | ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwss 3645 | . 2 ⊢ (𝒫 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | setind 4608 | . 2 ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (𝒫 𝐴 ⊆ 𝐴 → 𝐴 = V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1373 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 𝒫 cpw 3629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-ral 2493 df-v 2781 df-in 3183 df-ss 3190 df-pw 3631 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |