ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwss Unicode version

Theorem pwss 3632
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem pwss
StepHypRef Expression
1 ssalel 3181 . 2  |-  ( ~P A  C_  B  <->  A. x
( x  e.  ~P A  ->  x  e.  B
) )
2 df-pw 3618 . . . . 5  |-  ~P A  =  { x  |  x 
C_  A }
32abeq2i 2316 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
43imbi1i 238 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  B )  <-> 
( x  C_  A  ->  x  e.  B ) )
54albii 1493 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  B )  <->  A. x
( x  C_  A  ->  x  e.  B ) )
61, 5bitri 184 1  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2176    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  axpweq  4215  setind2  4588
  Copyright terms: Public domain W3C validator