ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwss Unicode version

Theorem pwss 3593
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3146 . 2  |-  ( ~P A  C_  B  <->  A. x
( x  e.  ~P A  ->  x  e.  B
) )
2 df-pw 3579 . . . . 5  |-  ~P A  =  { x  |  x 
C_  A }
32abeq2i 2288 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
43imbi1i 238 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  B )  <-> 
( x  C_  A  ->  x  e.  B ) )
54albii 1470 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  B )  <->  A. x
( x  C_  A  ->  x  e.  B ) )
61, 5bitri 184 1  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    e. wcel 2148    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  axpweq  4173  setind2  4541
  Copyright terms: Public domain W3C validator