ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwss Unicode version

Theorem pwss 3617
Description: Subclass relationship for power class. (Contributed by NM, 21-Jun-2009.)
Assertion
Ref Expression
pwss  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem pwss
StepHypRef Expression
1 dfss2 3168 . 2  |-  ( ~P A  C_  B  <->  A. x
( x  e.  ~P A  ->  x  e.  B
) )
2 df-pw 3603 . . . . 5  |-  ~P A  =  { x  |  x 
C_  A }
32abeq2i 2304 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
43imbi1i 238 . . 3  |-  ( ( x  e.  ~P A  ->  x  e.  B )  <-> 
( x  C_  A  ->  x  e.  B ) )
54albii 1481 . 2  |-  ( A. x ( x  e. 
~P A  ->  x  e.  B )  <->  A. x
( x  C_  A  ->  x  e.  B ) )
61, 5bitri 184 1  |-  ( ~P A  C_  B  <->  A. x
( x  C_  A  ->  x  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    e. wcel 2164    C_ wss 3153   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by:  axpweq  4200  setind2  4572
  Copyright terms: Public domain W3C validator