ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l Unicode version

Theorem simp-4l 541
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 533 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ph )
21adantr 276 1  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  simp-5l  543  disjiun  4077  fnfi  7091  nninfisol  7288  swrdccatin1  11243  sumeq2  11856  zsumdc  11881  modfsummod  11955  prodeq2  12054  zproddc  12076  mulgval  13645  mplsubgfilemcl  14648  cncnp  14889  fsumcncntop  15226  dvmptfsum  15384  dvply2g  15425  logbgcd1irrap  15629
  Copyright terms: Public domain W3C validator