ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l Unicode version

Theorem simp-4l 541
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 533 . 2  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  th )  ->  ph )
21adantr 276 1  |-  ( ( ( ( ( ph  /\ 
ps )  /\  ch )  /\  th )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  simp-5l  543  disjiun  4029  fnfi  7011  nninfisol  7208  sumeq2  11541  zsumdc  11566  modfsummod  11640  prodeq2  11739  zproddc  11761  mulgval  13328  cncnp  14550  fsumcncntop  14887  dvmptfsum  15045  dvply2g  15086  logbgcd1irrap  15290
  Copyright terms: Public domain W3C validator