ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l GIF version

Theorem simp-4l 541
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 533 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  simp-5l  543  disjiun  4042  fnfi  7045  nninfisol  7242  sumeq2  11714  zsumdc  11739  modfsummod  11813  prodeq2  11912  zproddc  11934  mulgval  13502  mplsubgfilemcl  14505  cncnp  14746  fsumcncntop  15083  dvmptfsum  15241  dvply2g  15282  logbgcd1irrap  15486
  Copyright terms: Public domain W3C validator