ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l GIF version

Theorem simp-4l 536
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 528 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
21adantr 274 1 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  simp-5l  538  disjiun  3984  fnfi  6914  nninfisol  7109  sumeq2  11322  zsumdc  11347  modfsummod  11421  prodeq2  11520  zproddc  11542  cncnp  13024  fsumcncntop  13350  logbgcd1irrap  13682
  Copyright terms: Public domain W3C validator