ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l GIF version

Theorem simp-4l 541
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 533 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  simp-5l  543  disjiun  4029  fnfi  7011  nninfisol  7208  sumeq2  11543  zsumdc  11568  modfsummod  11642  prodeq2  11741  zproddc  11763  mulgval  13330  mplsubgfilemcl  14333  cncnp  14574  fsumcncntop  14911  dvmptfsum  15069  dvply2g  15110  logbgcd1irrap  15314
  Copyright terms: Public domain W3C validator