ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp-4l GIF version

Theorem simp-4l 541
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
simp-4l (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)

Proof of Theorem simp-4l
StepHypRef Expression
1 simplll 533 . 2 ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜑)
21adantr 276 1 (((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  simp-5l  543  disjiun  4078  fnfi  7111  nninfisol  7308  swrdccatin1  11265  sumeq2  11878  zsumdc  11903  modfsummod  11977  prodeq2  12076  zproddc  12098  mulgval  13667  mplsubgfilemcl  14671  cncnp  14912  fsumcncntop  15249  dvmptfsum  15407  dvply2g  15448  logbgcd1irrap  15652  upgriswlkdc  16081
  Copyright terms: Public domain W3C validator