ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irrap Unicode version

Theorem logbgcd1irrap 13682
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is irrational (in the sense of being apart from any rational number) if the argument and the base are relatively prime. For example,  ( 2 logb  9 ) #  Q where  Q is rational. (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irrap  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  ( B logb  X
) #  Q )

Proof of Theorem logbgcd1irrap
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprr 527 . . 3  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  Q  e.  QQ )
2 elq 9581 . . 3  |-  ( Q  e.  QQ  <->  E. m  e.  ZZ  E. n  e.  NN  Q  =  ( m  /  n ) )
31, 2sylib 121 . 2  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  E. m  e.  ZZ  E. n  e.  NN  Q  =  ( m  /  n ) )
4 simp-4l 536 . . . . . 6  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  X  e.  ( ZZ>= `  2 )
)
5 simp-4r 537 . . . . . 6  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  B  e.  ( ZZ>= `  2 )
)
6 simprl 526 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  ( X  gcd  B )  =  1 )
76ad2antrr 485 . . . . . 6  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  ( X  gcd  B )  =  1 )
8 simplrl 530 . . . . . 6  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  m  e.  ZZ )
9 simplrr 531 . . . . . 6  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  n  e.  NN )
104, 5, 7, 8, 9logbgcd1irraplemap 13681 . . . . 5  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  ( B logb 
X ) #  ( m  /  n ) )
11 simpr 109 . . . . 5  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  Q  =  ( m  /  n ) )
1210, 11breqtrrd 4017 . . . 4  |-  ( ( ( ( ( X  e.  ( ZZ>= `  2
)  /\  B  e.  ( ZZ>= `  2 )
)  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  /\  Q  =  ( m  /  n
) )  ->  ( B logb 
X ) #  Q )
1312ex 114 . . 3  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  /\  ( m  e.  ZZ  /\  n  e.  NN ) )  ->  ( Q  =  ( m  /  n )  ->  ( B logb 
X ) #  Q ) )
1413rexlimdvva 2595 . 2  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  ( E. m  e.  ZZ  E. n  e.  NN  Q  =  ( m  /  n )  ->  ( B logb  X ) #  Q ) )
153, 14mpd 13 1  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( ( X  gcd  B )  =  1  /\  Q  e.  QQ ) )  ->  ( B logb  X
) #  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   1c1 7775   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578    gcd cgcd 11897   logb clogb 13655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-e 11612  df-dvds 11750  df-gcd 11898  df-prm 12062  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420  df-relog 13573  df-rpcxp 13574  df-logb 13656
This theorem is referenced by:  2logb9irrap  13689
  Copyright terms: Public domain W3C validator