ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi Unicode version

Theorem fnfi 6938
Description: A version of fnex 5740 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )

Proof of Theorem fnfi
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5327 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
21adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  =  F )
3 reseq2 4904 . . . 4  |-  ( w  =  (/)  ->  ( F  |`  w )  =  ( F  |`  (/) ) )
43eleq1d 2246 . . 3  |-  ( w  =  (/)  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  (/) )  e.  Fin )
)
5 reseq2 4904 . . . 4  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
65eleq1d 2246 . . 3  |-  ( w  =  y  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  y )  e.  Fin ) )
7 reseq2 4904 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( F  |`  w )  =  ( F  |`  ( y  u.  { z } ) ) )
87eleq1d 2246 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
9 reseq2 4904 . . . 4  |-  ( w  =  A  ->  ( F  |`  w )  =  ( F  |`  A ) )
109eleq1d 2246 . . 3  |-  ( w  =  A  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  A )  e.  Fin ) )
11 res0 4913 . . . . 5  |-  ( F  |`  (/) )  =  (/)
12 0fin 6886 . . . . 5  |-  (/)  e.  Fin
1311, 12eqeltri 2250 . . . 4  |-  ( F  |`  (/) )  e.  Fin
1413a1i 9 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e. 
Fin )
15 resundi 4922 . . . . 5  |-  ( F  |`  ( y  u.  {
z } ) )  =  ( ( F  |`  y )  u.  ( F  |`  { z } ) )
16 simp-4l 541 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  F  Fn  A
)
17 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  ( A  \  y ) )
1817eldifad 3142 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  A
)
19 fnressn 5704 . . . . . . . 8  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
2016, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `  z ) >. } )
2120uneq2d 3291 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  =  ( ( F  |`  y
)  u.  { <. z ,  ( F `  z ) >. } ) )
22 simpr 110 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  y )  e.  Fin )
2317elexd 2752 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  _V )
24 funfvex 5534 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
2524funfni 5318 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F `  z
)  e.  _V )
2616, 18, 25syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F `  z )  e.  _V )
27 opexg 4230 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( F `  z )  e.  _V )  ->  <. z ,  ( F `
 z ) >.  e.  _V )
2823, 26, 27syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  <. z ,  ( F `  z )
>.  e.  _V )
2917eldifbd 3143 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  z  e.  y )
30 opeldmg 4834 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  ( F `  z )  e.  _V )  -> 
( <. z ,  ( F `  z )
>.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
3118, 26, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
32 dmres 4930 . . . . . . . . . . 11  |-  dom  ( F  |`  y )  =  ( y  i^i  dom  F )
3332eleq2i 2244 . . . . . . . . . 10  |-  ( z  e.  dom  ( F  |`  y )  <->  z  e.  ( y  i^i  dom  F ) )
3431, 33imbitrdi 161 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  ( y  i^i  dom  F )
) )
35 elin 3320 . . . . . . . . . 10  |-  ( z  e.  ( y  i^i 
dom  F )  <->  ( z  e.  y  /\  z  e.  dom  F ) )
3635simplbi 274 . . . . . . . . 9  |-  ( z  e.  ( y  i^i 
dom  F )  -> 
z  e.  y )
3734, 36syl6 33 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  y ) )
3829, 37mtod 663 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  <. z ,  ( F `  z
) >.  e.  ( F  |`  y ) )
39 unsnfi 6920 . . . . . . 7  |-  ( ( ( F  |`  y
)  e.  Fin  /\  <.
z ,  ( F `
 z ) >.  e.  _V  /\  -.  <. z ,  ( F `  z ) >.  e.  ( F  |`  y )
)  ->  ( ( F  |`  y )  u. 
{ <. z ,  ( F `  z )
>. } )  e.  Fin )
4022, 28, 38, 39syl3anc 1238 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  { <. z ,  ( F `
 z ) >. } )  e.  Fin )
4121, 40eqeltrd 2254 . . . . 5  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  e.  Fin )
4215, 41eqeltrid 2264 . . . 4  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  ( y  u.  {
z } ) )  e.  Fin )
4342ex 115 . . 3  |-  ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (
( F  |`  y
)  e.  Fin  ->  ( F  |`  ( y  u.  { z } ) )  e.  Fin )
)
44 simpr 110 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  A  e.  Fin )
454, 6, 8, 10, 14, 43, 44findcard2sd 6894 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin )
462, 45eqeltrrd 2255 1  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    \ cdif 3128    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   {csn 3594   <.cop 3597   dom cdm 4628    |` cres 4630    Fn wfn 5213   ` cfv 5218   Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1o 6419  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  fundmfibi  6940  resfnfinfinss  6941  fihashf1rn  10770  fihashfn  10782  xpsfrnel  12768
  Copyright terms: Public domain W3C validator