ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi Unicode version

Theorem fnfi 7002
Description: A version of fnex 5784 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )

Proof of Theorem fnfi
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5367 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
21adantr 276 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  =  F )
3 reseq2 4941 . . . 4  |-  ( w  =  (/)  ->  ( F  |`  w )  =  ( F  |`  (/) ) )
43eleq1d 2265 . . 3  |-  ( w  =  (/)  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  (/) )  e.  Fin )
)
5 reseq2 4941 . . . 4  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
65eleq1d 2265 . . 3  |-  ( w  =  y  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  y )  e.  Fin ) )
7 reseq2 4941 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( F  |`  w )  =  ( F  |`  ( y  u.  { z } ) ) )
87eleq1d 2265 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
9 reseq2 4941 . . . 4  |-  ( w  =  A  ->  ( F  |`  w )  =  ( F  |`  A ) )
109eleq1d 2265 . . 3  |-  ( w  =  A  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  A )  e.  Fin ) )
11 res0 4950 . . . . 5  |-  ( F  |`  (/) )  =  (/)
12 0fin 6945 . . . . 5  |-  (/)  e.  Fin
1311, 12eqeltri 2269 . . . 4  |-  ( F  |`  (/) )  e.  Fin
1413a1i 9 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e. 
Fin )
15 resundi 4959 . . . . 5  |-  ( F  |`  ( y  u.  {
z } ) )  =  ( ( F  |`  y )  u.  ( F  |`  { z } ) )
16 simp-4l 541 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  F  Fn  A
)
17 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  ( A  \  y ) )
1817eldifad 3168 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  A
)
19 fnressn 5748 . . . . . . . 8  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
2016, 18, 19syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `  z ) >. } )
2120uneq2d 3317 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  =  ( ( F  |`  y
)  u.  { <. z ,  ( F `  z ) >. } ) )
22 simpr 110 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  y )  e.  Fin )
2317elexd 2776 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  _V )
24 funfvex 5575 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
2524funfni 5358 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F `  z
)  e.  _V )
2616, 18, 25syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F `  z )  e.  _V )
27 opexg 4261 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( F `  z )  e.  _V )  ->  <. z ,  ( F `
 z ) >.  e.  _V )
2823, 26, 27syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  <. z ,  ( F `  z )
>.  e.  _V )
2917eldifbd 3169 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  z  e.  y )
30 opeldmg 4871 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  ( F `  z )  e.  _V )  -> 
( <. z ,  ( F `  z )
>.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
3118, 26, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
32 dmres 4967 . . . . . . . . . . 11  |-  dom  ( F  |`  y )  =  ( y  i^i  dom  F )
3332eleq2i 2263 . . . . . . . . . 10  |-  ( z  e.  dom  ( F  |`  y )  <->  z  e.  ( y  i^i  dom  F ) )
3431, 33imbitrdi 161 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  ( y  i^i  dom  F )
) )
35 elin 3346 . . . . . . . . . 10  |-  ( z  e.  ( y  i^i 
dom  F )  <->  ( z  e.  y  /\  z  e.  dom  F ) )
3635simplbi 274 . . . . . . . . 9  |-  ( z  e.  ( y  i^i 
dom  F )  -> 
z  e.  y )
3734, 36syl6 33 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  y ) )
3829, 37mtod 664 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  <. z ,  ( F `  z
) >.  e.  ( F  |`  y ) )
39 unsnfi 6980 . . . . . . 7  |-  ( ( ( F  |`  y
)  e.  Fin  /\  <.
z ,  ( F `
 z ) >.  e.  _V  /\  -.  <. z ,  ( F `  z ) >.  e.  ( F  |`  y )
)  ->  ( ( F  |`  y )  u. 
{ <. z ,  ( F `  z )
>. } )  e.  Fin )
4022, 28, 38, 39syl3anc 1249 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  { <. z ,  ( F `
 z ) >. } )  e.  Fin )
4121, 40eqeltrd 2273 . . . . 5  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  e.  Fin )
4215, 41eqeltrid 2283 . . . 4  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  ( y  u.  {
z } ) )  e.  Fin )
4342ex 115 . . 3  |-  ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (
( F  |`  y
)  e.  Fin  ->  ( F  |`  ( y  u.  { z } ) )  e.  Fin )
)
44 simpr 110 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  A  e.  Fin )
454, 6, 8, 10, 14, 43, 44findcard2sd 6953 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin )
462, 45eqeltrrd 2274 1  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    \ cdif 3154    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   <.cop 3625   dom cdm 4663    |` cres 4665    Fn wfn 5253   ` cfv 5258   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  fundmfibi  7004  resfnfinfinss  7005  seqf1oglem2  10612  seqf1og  10613  fihashf1rn  10880  fihashfn  10892  wrdfin  10954  xpsfrnel  12987
  Copyright terms: Public domain W3C validator