ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi Unicode version

Theorem fnfi 6902
Description: A version of fnex 5707 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )

Proof of Theorem fnfi
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5297 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
21adantr 274 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  =  F )
3 reseq2 4879 . . . 4  |-  ( w  =  (/)  ->  ( F  |`  w )  =  ( F  |`  (/) ) )
43eleq1d 2235 . . 3  |-  ( w  =  (/)  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  (/) )  e.  Fin )
)
5 reseq2 4879 . . . 4  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
65eleq1d 2235 . . 3  |-  ( w  =  y  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  y )  e.  Fin ) )
7 reseq2 4879 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( F  |`  w )  =  ( F  |`  ( y  u.  { z } ) ) )
87eleq1d 2235 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
9 reseq2 4879 . . . 4  |-  ( w  =  A  ->  ( F  |`  w )  =  ( F  |`  A ) )
109eleq1d 2235 . . 3  |-  ( w  =  A  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  A )  e.  Fin ) )
11 res0 4888 . . . . 5  |-  ( F  |`  (/) )  =  (/)
12 0fin 6850 . . . . 5  |-  (/)  e.  Fin
1311, 12eqeltri 2239 . . . 4  |-  ( F  |`  (/) )  e.  Fin
1413a1i 9 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e. 
Fin )
15 resundi 4897 . . . . 5  |-  ( F  |`  ( y  u.  {
z } ) )  =  ( ( F  |`  y )  u.  ( F  |`  { z } ) )
16 simp-4l 531 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  F  Fn  A
)
17 simplrr 526 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  ( A  \  y ) )
1817eldifad 3127 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  A
)
19 fnressn 5671 . . . . . . . 8  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
2016, 18, 19syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `  z ) >. } )
2120uneq2d 3276 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  =  ( ( F  |`  y
)  u.  { <. z ,  ( F `  z ) >. } ) )
22 simpr 109 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  y )  e.  Fin )
2317elexd 2739 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  _V )
24 funfvex 5503 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
2524funfni 5288 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F `  z
)  e.  _V )
2616, 18, 25syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F `  z )  e.  _V )
27 opexg 4206 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( F `  z )  e.  _V )  ->  <. z ,  ( F `
 z ) >.  e.  _V )
2823, 26, 27syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  <. z ,  ( F `  z )
>.  e.  _V )
2917eldifbd 3128 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  z  e.  y )
30 opeldmg 4809 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  ( F `  z )  e.  _V )  -> 
( <. z ,  ( F `  z )
>.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
3118, 26, 30syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
32 dmres 4905 . . . . . . . . . . 11  |-  dom  ( F  |`  y )  =  ( y  i^i  dom  F )
3332eleq2i 2233 . . . . . . . . . 10  |-  ( z  e.  dom  ( F  |`  y )  <->  z  e.  ( y  i^i  dom  F ) )
3431, 33syl6ib 160 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  ( y  i^i  dom  F )
) )
35 elin 3305 . . . . . . . . . 10  |-  ( z  e.  ( y  i^i 
dom  F )  <->  ( z  e.  y  /\  z  e.  dom  F ) )
3635simplbi 272 . . . . . . . . 9  |-  ( z  e.  ( y  i^i 
dom  F )  -> 
z  e.  y )
3734, 36syl6 33 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  y ) )
3829, 37mtod 653 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  <. z ,  ( F `  z
) >.  e.  ( F  |`  y ) )
39 unsnfi 6884 . . . . . . 7  |-  ( ( ( F  |`  y
)  e.  Fin  /\  <.
z ,  ( F `
 z ) >.  e.  _V  /\  -.  <. z ,  ( F `  z ) >.  e.  ( F  |`  y )
)  ->  ( ( F  |`  y )  u. 
{ <. z ,  ( F `  z )
>. } )  e.  Fin )
4022, 28, 38, 39syl3anc 1228 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  { <. z ,  ( F `
 z ) >. } )  e.  Fin )
4121, 40eqeltrd 2243 . . . . 5  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  e.  Fin )
4215, 41eqeltrid 2253 . . . 4  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  ( y  u.  {
z } ) )  e.  Fin )
4342ex 114 . . 3  |-  ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (
( F  |`  y
)  e.  Fin  ->  ( F  |`  ( y  u.  { z } ) )  e.  Fin )
)
44 simpr 109 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  A  e.  Fin )
454, 6, 8, 10, 14, 43, 44findcard2sd 6858 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin )
462, 45eqeltrrd 2244 1  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576   <.cop 3579   dom cdm 4604    |` cres 4606    Fn wfn 5183   ` cfv 5188   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1o 6384  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  fundmfibi  6904  resfnfinfinss  6905  fihashf1rn  10702  fihashfn  10713
  Copyright terms: Public domain W3C validator