ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnfi Unicode version

Theorem fnfi 6818
Description: A version of fnex 5635 for finite sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
fnfi  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )

Proof of Theorem fnfi
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnresdm 5227 . . 3  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
21adantr 274 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  =  F )
3 reseq2 4809 . . . 4  |-  ( w  =  (/)  ->  ( F  |`  w )  =  ( F  |`  (/) ) )
43eleq1d 2206 . . 3  |-  ( w  =  (/)  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  (/) )  e.  Fin )
)
5 reseq2 4809 . . . 4  |-  ( w  =  y  ->  ( F  |`  w )  =  ( F  |`  y
) )
65eleq1d 2206 . . 3  |-  ( w  =  y  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  y )  e.  Fin ) )
7 reseq2 4809 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  ( F  |`  w )  =  ( F  |`  ( y  u.  { z } ) ) )
87eleq1d 2206 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( F  |`  w )  e.  Fin  <->  ( F  |`  ( y  u. 
{ z } ) )  e.  Fin )
)
9 reseq2 4809 . . . 4  |-  ( w  =  A  ->  ( F  |`  w )  =  ( F  |`  A ) )
109eleq1d 2206 . . 3  |-  ( w  =  A  ->  (
( F  |`  w
)  e.  Fin  <->  ( F  |`  A )  e.  Fin ) )
11 res0 4818 . . . . 5  |-  ( F  |`  (/) )  =  (/)
12 0fin 6771 . . . . 5  |-  (/)  e.  Fin
1311, 12eqeltri 2210 . . . 4  |-  ( F  |`  (/) )  e.  Fin
1413a1i 9 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  (/) )  e. 
Fin )
15 resundi 4827 . . . . 5  |-  ( F  |`  ( y  u.  {
z } ) )  =  ( ( F  |`  y )  u.  ( F  |`  { z } ) )
16 simp-4l 530 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  F  Fn  A
)
17 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  ( A  \  y ) )
1817eldifad 3077 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  A
)
19 fnressn 5599 . . . . . . . 8  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `
 z ) >. } )
2016, 18, 19syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  { z } )  =  { <. z ,  ( F `  z ) >. } )
2120uneq2d 3225 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  =  ( ( F  |`  y
)  u.  { <. z ,  ( F `  z ) >. } ) )
22 simpr 109 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  y )  e.  Fin )
2317elexd 2694 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  z  e.  _V )
24 funfvex 5431 . . . . . . . . . 10  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( F `  z
)  e.  _V )
2524funfni 5218 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  z  e.  A )  ->  ( F `  z
)  e.  _V )
2616, 18, 25syl2anc 408 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F `  z )  e.  _V )
27 opexg 4145 . . . . . . . 8  |-  ( ( z  e.  _V  /\  ( F `  z )  e.  _V )  ->  <. z ,  ( F `
 z ) >.  e.  _V )
2823, 26, 27syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  <. z ,  ( F `  z )
>.  e.  _V )
2917eldifbd 3078 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  z  e.  y )
30 opeldmg 4739 . . . . . . . . . . 11  |-  ( ( z  e.  A  /\  ( F `  z )  e.  _V )  -> 
( <. z ,  ( F `  z )
>.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
3118, 26, 30syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  dom  ( F  |`  y ) ) )
32 dmres 4835 . . . . . . . . . . 11  |-  dom  ( F  |`  y )  =  ( y  i^i  dom  F )
3332eleq2i 2204 . . . . . . . . . 10  |-  ( z  e.  dom  ( F  |`  y )  <->  z  e.  ( y  i^i  dom  F ) )
3431, 33syl6ib 160 . . . . . . . . 9  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  ( y  i^i  dom  F )
) )
35 elin 3254 . . . . . . . . . 10  |-  ( z  e.  ( y  i^i 
dom  F )  <->  ( z  e.  y  /\  z  e.  dom  F ) )
3635simplbi 272 . . . . . . . . 9  |-  ( z  e.  ( y  i^i 
dom  F )  -> 
z  e.  y )
3734, 36syl6 33 . . . . . . . 8  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( <. z ,  ( F `  z ) >.  e.  ( F  |`  y )  ->  z  e.  y ) )
3829, 37mtod 652 . . . . . . 7  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  -.  <. z ,  ( F `  z
) >.  e.  ( F  |`  y ) )
39 unsnfi 6800 . . . . . . 7  |-  ( ( ( F  |`  y
)  e.  Fin  /\  <.
z ,  ( F `
 z ) >.  e.  _V  /\  -.  <. z ,  ( F `  z ) >.  e.  ( F  |`  y )
)  ->  ( ( F  |`  y )  u. 
{ <. z ,  ( F `  z )
>. } )  e.  Fin )
4022, 28, 38, 39syl3anc 1216 . . . . . 6  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  { <. z ,  ( F `
 z ) >. } )  e.  Fin )
4121, 40eqeltrd 2214 . . . . 5  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( ( F  |`  y )  u.  ( F  |`  { z } ) )  e.  Fin )
4215, 41eqeltrid 2224 . . . 4  |-  ( ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( F  |`  y )  e.  Fin )  ->  ( F  |`  ( y  u.  {
z } ) )  e.  Fin )
4342ex 114 . . 3  |-  ( ( ( ( F  Fn  A  /\  A  e.  Fin )  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  (
( F  |`  y
)  e.  Fin  ->  ( F  |`  ( y  u.  { z } ) )  e.  Fin )
)
44 simpr 109 . . 3  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  A  e.  Fin )
454, 6, 8, 10, 14, 43, 44findcard2sd 6779 . 2  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( F  |`  A )  e.  Fin )
462, 45eqeltrrd 2215 1  |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  F  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2681    \ cdif 3063    u. cun 3064    i^i cin 3065    C_ wss 3066   (/)c0 3358   {csn 3522   <.cop 3525   dom cdm 4534    |` cres 4536    Fn wfn 5113   ` cfv 5118   Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by:  fundmfibi  6820  resfnfinfinss  6821  fihashf1rn  10528  fihashfn  10539
  Copyright terms: Public domain W3C validator