ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcncntop Unicode version

Theorem fsumcncntop 13196
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcncntop.3  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
fsumcn.4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
fsumcn.5  |-  ( ph  ->  A  e.  Fin )
fsumcn.6  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
fsumcncntop  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, A   
k, J, x    ph, k, x    k, K, x    k, X, x
Allowed substitution hints:    B( x, k)

Proof of Theorem fsumcncntop
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11296 . . . 4  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
21mpteq2dv 4073 . . 3  |-  ( w  =  (/)  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  (/)  B ) )
32eleq1d 2235 . 2  |-  ( w  =  (/)  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K )  <->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K
) ) )
4 sumeq1 11296 . . . 4  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
54mpteq2dv 4073 . . 3  |-  ( w  =  y  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  y  B )
)
65eleq1d 2235 . 2  |-  ( w  =  y  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
7 sumeq1 11296 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
87mpteq2dv 4073 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B ) )
98eleq1d 2235 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K
)  <->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) )
10 sumeq1 11296 . . . 4  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
1110mpteq2dv 4073 . . 3  |-  ( w  =  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  A  B )
)
1211eleq1d 2235 . 2  |-  ( w  =  A  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
13 sum0 11329 . . . 4  |-  sum_ k  e.  (/)  B  =  0
1413mpteq2i 4069 . . 3  |-  ( x  e.  X  |->  sum_ k  e.  (/)  B )  =  ( x  e.  X  |->  0 )
15 fsumcn.4 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 fsumcncntop.3 . . . . . 6  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
1716cntoptopon 13172 . . . . 5  |-  K  e.  (TopOn `  CC )
1817a1i 9 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
19 0cnd 7892 . . . 4  |-  ( ph  ->  0  e.  CC )
2015, 18, 19cnmptc 12922 . . 3  |-  ( ph  ->  ( x  e.  X  |->  0 )  e.  ( J  Cn  K ) )
2114, 20eqeltrid 2253 . 2  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) )
22 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  z  e.  ( A  \  y
) )
2322eldifbd 3128 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  -.  z  e.  y )
24 disjsn 3638 . . . . . . . . . 10  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
2523, 24sylibr 133 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  i^i  { z } )  =  (/) )
26 eqidd 2166 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  =  ( y  u.  { z } ) )
27 simpllr 524 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  y  e.  Fin )
28 unsnfi 6884 . . . . . . . . . 10  |-  ( ( y  e.  Fin  /\  z  e.  ( A  \  y )  /\  -.  z  e.  y )  ->  ( y  u.  {
z } )  e. 
Fin )
2927, 22, 23, 28syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  e.  Fin )
30 simp-4l 531 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  ph )
31 simplrl 525 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  y  C_  A )
3222eldifad 3127 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  z  e.  A )
3332snssd 3718 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  { z }  C_  A )
3431, 33unssd 3298 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  C_  A
)
3534sselda 3142 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  A
)
36 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  x  e.  X
)
3715adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  J  e.  (TopOn `  X )
)
3817a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  K  e.  (TopOn `  CC )
)
39 fsumcn.6 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
40 cnf2 12845 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  CC )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> CC )
4137, 38, 39, 40syl3anc 1228 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B ) : X --> CC )
42 eqid 2165 . . . . . . . . . . . . . 14  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
4342fmpt 5635 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
4441, 43sylibr 133 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  A. x  e.  X  B  e.  CC )
45 rsp 2513 . . . . . . . . . . . 12  |-  ( A. x  e.  X  B  e.  CC  ->  ( x  e.  X  ->  B  e.  CC ) )
4644, 45syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  ->  B  e.  CC )
)
4746imp 123 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  x  e.  X )  ->  B  e.  CC )
4830, 35, 36, 47syl21anc 1227 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  B  e.  CC )
4925, 26, 29, 48fsumsplit 11348 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B ) )
50 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  ph )
51 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  x  e.  X )
5246impancom 258 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  A  ->  B  e.  CC )
)
5352ralrimiv 2538 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
5450, 51, 53syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
55 nfcsb1v 3078 . . . . . . . . . . . . 13  |-  F/_ k [_ z  /  k ]_ B
5655nfel1 2319 . . . . . . . . . . . 12  |-  F/ k
[_ z  /  k ]_ B  e.  CC
57 csbeq1a 3054 . . . . . . . . . . . . 13  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
5857eleq1d 2235 . . . . . . . . . . . 12  |-  ( k  =  z  ->  ( B  e.  CC  <->  [_ z  / 
k ]_ B  e.  CC ) )
5956, 58rspc 2824 . . . . . . . . . . 11  |-  ( z  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ z  /  k ]_ B  e.  CC )
)
6032, 54, 59sylc 62 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  [_ z  /  k ]_ B  e.  CC )
61 sumsns 11356 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  y )  /\  [_ z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
z } B  = 
[_ z  /  k ]_ B )
6222, 60, 61syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  { z } B  =  [_ z  /  k ]_ B )
6362oveq2d 5858 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  ( sum_ k  e.  y  B  +  sum_ k  e.  {
z } B )  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
6449, 63eqtrd 2198 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
6564mpteq2dva 4072 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) ) )
6665adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) ) )
67 nfcv 2308 . . . . . 6  |-  F/_ w
( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
)
68 nfcv 2308 . . . . . . . 8  |-  F/_ x
y
69 nfcsb1v 3078 . . . . . . . 8  |-  F/_ x [_ w  /  x ]_ B
7068, 69nfsum 11298 . . . . . . 7  |-  F/_ x sum_ k  e.  y  [_ w  /  x ]_ B
71 nfcv 2308 . . . . . . 7  |-  F/_ x  +
72 nfcv 2308 . . . . . . . 8  |-  F/_ x
z
7372, 69nfcsb 3082 . . . . . . 7  |-  F/_ x [_ z  /  k ]_ [_ w  /  x ]_ B
7470, 71, 73nfov 5872 . . . . . 6  |-  F/_ x
( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B )
75 csbeq1a 3054 . . . . . . . 8  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
7675sumeq2ad 11310 . . . . . . 7  |-  ( x  =  w  ->  sum_ k  e.  y  B  =  sum_ k  e.  y  [_ w  /  x ]_ B
)
7775csbeq2dv 3071 . . . . . . 7  |-  ( x  =  w  ->  [_ z  /  k ]_ B  =  [_ z  /  k ]_ [_ w  /  x ]_ B )
7876, 77oveq12d 5860 . . . . . 6  |-  ( x  =  w  ->  ( sum_ k  e.  y  B  +  [_ z  / 
k ]_ B )  =  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
7967, 74, 78cbvmpt 4077 . . . . 5  |-  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
8066, 79eqtrdi 2215 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) ) )
8115ad3antrrr 484 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  X )
)
82 nfcv 2308 . . . . . . 7  |-  F/_ w sum_ k  e.  y  B
8382, 70, 76cbvmpt 4077 . . . . . 6  |-  ( x  e.  X  |->  sum_ k  e.  y  B )  =  ( w  e.  X  |->  sum_ k  e.  y 
[_ w  /  x ]_ B )
84 simpr 109 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )
8583, 84eqeltrrid 2254 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  sum_ k  e.  y  [_ w  /  x ]_ B
)  e.  ( J  Cn  K ) )
86 nfcv 2308 . . . . . . 7  |-  F/_ w [_ z  /  k ]_ B
8786, 73, 77cbvmpt 4077 . . . . . 6  |-  ( x  e.  X  |->  [_ z  /  k ]_ B
)  =  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )
88 simprr 522 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
8988eldifad 3127 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
9089adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  z  e.  A )
9139ralrimiva 2539 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
9291ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
93 nfcv 2308 . . . . . . . . . 10  |-  F/_ k X
9493, 55nfmpt 4074 . . . . . . . . 9  |-  F/_ k
( x  e.  X  |-> 
[_ z  /  k ]_ B )
9594nfel1 2319 . . . . . . . 8  |-  F/ k ( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K )
9657mpteq2dv 4073 . . . . . . . . 9  |-  ( k  =  z  ->  (
x  e.  X  |->  B )  =  ( x  e.  X  |->  [_ z  /  k ]_ B
) )
9796eleq1d 2235 . . . . . . . 8  |-  ( k  =  z  ->  (
( x  e.  X  |->  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
9895, 97rspc 2824 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
9990, 92, 98sylc 62 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  [_ z  /  k ]_ B
)  e.  ( J  Cn  K ) )
10087, 99eqeltrrid 2254 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )  e.  ( J  Cn  K ) )
10116addcncntop 13192 . . . . . 6  |-  +  e.  ( ( K  tX  K )  Cn  K
)
102101a1i 9 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  +  e.  ( ( K  tX  K )  Cn  K
) )
10381, 85, 100, 102cnmpt12f 12926 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  (
sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )  e.  ( J  Cn  K ) )
10480, 103eqeltrd 2243 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) )
105104ex 114 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
)  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) ) )
106 fsumcn.5 . 2  |-  ( ph  ->  A  e.  Fin )
1073, 6, 9, 12, 21, 105, 106findcard2sd 6858 1  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576    |-> cmpt 4043    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842   Fincfn 6706   CCcc 7751   0cc0 7753    + caddc 7756    - cmin 8069   abscabs 10939   sum_csu 11294   MetOpencmopn 12625  TopOnctopon 12648    Cn ccn 12825    tX ctx 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-addf 7875
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-map 6616  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-ihash 10689  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-cn 12828  df-cnp 12829  df-tx 12893
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator