ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcncntop Unicode version

Theorem fsumcncntop 12927
Description: A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for  B normally contains free variables  k and  x to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsumcncntop.3  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
fsumcn.4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
fsumcn.5  |-  ( ph  ->  A  e.  Fin )
fsumcn.6  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
Assertion
Ref Expression
fsumcncntop  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Distinct variable groups:    x, k, A   
k, J, x    ph, k, x    k, K, x    k, X, x
Allowed substitution hints:    B( x, k)

Proof of Theorem fsumcncntop
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11245 . . . 4  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
21mpteq2dv 4055 . . 3  |-  ( w  =  (/)  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  (/)  B ) )
32eleq1d 2226 . 2  |-  ( w  =  (/)  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K )  <->  ( x  e.  X  |->  sum_ k  e.  (/)  B )  e.  ( J  Cn  K
) ) )
4 sumeq1 11245 . . . 4  |-  ( w  =  y  ->  sum_ k  e.  w  B  =  sum_ k  e.  y  B )
54mpteq2dv 4055 . . 3  |-  ( w  =  y  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  y  B )
)
65eleq1d 2226 . 2  |-  ( w  =  y  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  y  B )  e.  ( J  Cn  K ) ) )
7 sumeq1 11245 . . . 4  |-  ( w  =  ( y  u. 
{ z } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
87mpteq2dv 4055 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B ) )
98eleq1d 2226 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( x  e.  X  |->  sum_ k  e.  w  B )  e.  ( J  Cn  K
)  <->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K ) ) )
10 sumeq1 11245 . . . 4  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
1110mpteq2dv 4055 . . 3  |-  ( w  =  A  ->  (
x  e.  X  |->  sum_ k  e.  w  B )  =  ( x  e.  X  |->  sum_ k  e.  A  B )
)
1211eleq1d 2226 . 2  |-  ( w  =  A  ->  (
( x  e.  X  |-> 
sum_ k  e.  w  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) ) )
13 sum0 11278 . . . 4  |-  sum_ k  e.  (/)  B  =  0
1413mpteq2i 4051 . . 3  |-  ( x  e.  X  |->  sum_ k  e.  (/)  B )  =  ( x  e.  X  |->  0 )
15 fsumcn.4 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
16 fsumcncntop.3 . . . . . 6  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
1716cntoptopon 12903 . . . . 5  |-  K  e.  (TopOn `  CC )
1817a1i 9 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  CC ) )
19 0cnd 7865 . . . 4  |-  ( ph  ->  0  e.  CC )
2015, 18, 19cnmptc 12653 . . 3  |-  ( ph  ->  ( x  e.  X  |->  0 )  e.  ( J  Cn  K ) )
2114, 20eqeltrid 2244 . 2  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  (/)  B )  e.  ( J  Cn  K ) )
22 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  z  e.  ( A  \  y
) )
2322eldifbd 3114 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  -.  z  e.  y )
24 disjsn 3621 . . . . . . . . . 10  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
2523, 24sylibr 133 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  i^i  { z } )  =  (/) )
26 eqidd 2158 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  =  ( y  u.  { z } ) )
27 simpllr 524 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  y  e.  Fin )
28 unsnfi 6860 . . . . . . . . . 10  |-  ( ( y  e.  Fin  /\  z  e.  ( A  \  y )  /\  -.  z  e.  y )  ->  ( y  u.  {
z } )  e. 
Fin )
2927, 22, 23, 28syl3anc 1220 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  e.  Fin )
30 simp-4l 531 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  ph )
31 simplrl 525 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  y  C_  A )
3222eldifad 3113 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  z  e.  A )
3332snssd 3701 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  { z }  C_  A )
3431, 33unssd 3283 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  (
y  u.  { z } )  C_  A
)
3534sselda 3128 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  k  e.  A
)
36 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  x  e.  X
)
3715adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  J  e.  (TopOn `  X )
)
3817a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  K  e.  (TopOn `  CC )
)
39 fsumcn.6 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B )  e.  ( J  Cn  K ) )
40 cnf2 12576 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  CC )  /\  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )  ->  ( x  e.  X  |->  B ) : X --> CC )
4137, 38, 39, 40syl3anc 1220 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  |->  B ) : X --> CC )
42 eqid 2157 . . . . . . . . . . . . . 14  |-  ( x  e.  X  |->  B )  =  ( x  e.  X  |->  B )
4342fmpt 5616 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  B  e.  CC  <->  ( x  e.  X  |->  B ) : X --> CC )
4441, 43sylibr 133 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  A. x  e.  X  B  e.  CC )
45 rsp 2504 . . . . . . . . . . . 12  |-  ( A. x  e.  X  B  e.  CC  ->  ( x  e.  X  ->  B  e.  CC ) )
4644, 45syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
x  e.  X  ->  B  e.  CC )
)
4746imp 123 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  x  e.  X )  ->  B  e.  CC )
4830, 35, 36, 47syl21anc 1219 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  /\  k  e.  ( y  u.  {
z } ) )  ->  B  e.  CC )
4925, 26, 29, 48fsumsplit 11297 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  sum_ k  e.  { z } B ) )
50 simplll 523 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  ph )
51 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  x  e.  X )
5246impancom 258 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  A  ->  B  e.  CC )
)
5352ralrimiv 2529 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
5450, 51, 53syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  A. k  e.  A  B  e.  CC )
55 nfcsb1v 3064 . . . . . . . . . . . . 13  |-  F/_ k [_ z  /  k ]_ B
5655nfel1 2310 . . . . . . . . . . . 12  |-  F/ k
[_ z  /  k ]_ B  e.  CC
57 csbeq1a 3040 . . . . . . . . . . . . 13  |-  ( k  =  z  ->  B  =  [_ z  /  k ]_ B )
5857eleq1d 2226 . . . . . . . . . . . 12  |-  ( k  =  z  ->  ( B  e.  CC  <->  [_ z  / 
k ]_ B  e.  CC ) )
5956, 58rspc 2810 . . . . . . . . . . 11  |-  ( z  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ z  /  k ]_ B  e.  CC )
)
6032, 54, 59sylc 62 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  [_ z  /  k ]_ B  e.  CC )
61 sumsns 11305 . . . . . . . . . 10  |-  ( ( z  e.  ( A 
\  y )  /\  [_ z  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
z } B  = 
[_ z  /  k ]_ B )
6222, 60, 61syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  { z } B  =  [_ z  /  k ]_ B )
6362oveq2d 5837 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  ( sum_ k  e.  y  B  +  sum_ k  e.  {
z } B )  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
6449, 63eqtrd 2190 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  x  e.  X )  ->  sum_ k  e.  ( y  u.  {
z } ) B  =  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )
6564mpteq2dva 4054 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) ) )
6665adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
) ) )
67 nfcv 2299 . . . . . 6  |-  F/_ w
( sum_ k  e.  y  B  +  [_ z  /  k ]_ B
)
68 nfcv 2299 . . . . . . . 8  |-  F/_ x
y
69 nfcsb1v 3064 . . . . . . . 8  |-  F/_ x [_ w  /  x ]_ B
7068, 69nfsum 11247 . . . . . . 7  |-  F/_ x sum_ k  e.  y  [_ w  /  x ]_ B
71 nfcv 2299 . . . . . . 7  |-  F/_ x  +
72 nfcv 2299 . . . . . . . 8  |-  F/_ x
z
7372, 69nfcsb 3068 . . . . . . 7  |-  F/_ x [_ z  /  k ]_ [_ w  /  x ]_ B
7470, 71, 73nfov 5848 . . . . . 6  |-  F/_ x
( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B )
75 csbeq1a 3040 . . . . . . . 8  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
7675sumeq2ad 11259 . . . . . . 7  |-  ( x  =  w  ->  sum_ k  e.  y  B  =  sum_ k  e.  y  [_ w  /  x ]_ B
)
7775csbeq2dv 3057 . . . . . . 7  |-  ( x  =  w  ->  [_ z  /  k ]_ B  =  [_ z  /  k ]_ [_ w  /  x ]_ B )
7876, 77oveq12d 5839 . . . . . 6  |-  ( x  =  w  ->  ( sum_ k  e.  y  B  +  [_ z  / 
k ]_ B )  =  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
7967, 74, 78cbvmpt 4059 . . . . 5  |-  ( x  e.  X  |->  ( sum_ k  e.  y  B  +  [_ z  /  k ]_ B ) )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )
8066, 79eqtrdi 2206 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  =  ( w  e.  X  |->  ( sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) ) )
8115ad3antrrr 484 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  X )
)
82 nfcv 2299 . . . . . . 7  |-  F/_ w sum_ k  e.  y  B
8382, 70, 76cbvmpt 4059 . . . . . 6  |-  ( x  e.  X  |->  sum_ k  e.  y  B )  =  ( w  e.  X  |->  sum_ k  e.  y 
[_ w  /  x ]_ B )
84 simpr 109 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K ) )
8583, 84eqeltrrid 2245 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  sum_ k  e.  y  [_ w  /  x ]_ B
)  e.  ( J  Cn  K ) )
86 nfcv 2299 . . . . . . 7  |-  F/_ w [_ z  /  k ]_ B
8786, 73, 77cbvmpt 4059 . . . . . 6  |-  ( x  e.  X  |->  [_ z  /  k ]_ B
)  =  ( w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )
88 simprr 522 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
8988eldifad 3113 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  A
)
9089adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  z  e.  A )
9139ralrimiva 2530 . . . . . . . 8  |-  ( ph  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
9291ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K ) )
93 nfcv 2299 . . . . . . . . . 10  |-  F/_ k X
9493, 55nfmpt 4056 . . . . . . . . 9  |-  F/_ k
( x  e.  X  |-> 
[_ z  /  k ]_ B )
9594nfel1 2310 . . . . . . . 8  |-  F/ k ( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K )
9657mpteq2dv 4055 . . . . . . . . 9  |-  ( k  =  z  ->  (
x  e.  X  |->  B )  =  ( x  e.  X  |->  [_ z  /  k ]_ B
) )
9796eleq1d 2226 . . . . . . . 8  |-  ( k  =  z  ->  (
( x  e.  X  |->  B )  e.  ( J  Cn  K )  <-> 
( x  e.  X  |-> 
[_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
9895, 97rspc 2810 . . . . . . 7  |-  ( z  e.  A  ->  ( A. k  e.  A  ( x  e.  X  |->  B )  e.  ( J  Cn  K )  ->  ( x  e.  X  |->  [_ z  /  k ]_ B )  e.  ( J  Cn  K ) ) )
9990, 92, 98sylc 62 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  [_ z  /  k ]_ B
)  e.  ( J  Cn  K ) )
10087, 99eqeltrrid 2245 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  [_ z  /  k ]_ [_ w  /  x ]_ B )  e.  ( J  Cn  K ) )
10116addcncntop 12923 . . . . . 6  |-  +  e.  ( ( K  tX  K )  Cn  K
)
102101a1i 9 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  +  e.  ( ( K  tX  K )  Cn  K
) )
10381, 85, 100, 102cnmpt12f 12657 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
w  e.  X  |->  (
sum_ k  e.  y 
[_ w  /  x ]_ B  +  [_ z  /  k ]_ [_ w  /  x ]_ B ) )  e.  ( J  Cn  K ) )
10480, 103eqeltrd 2234 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
) )  ->  (
x  e.  X  |->  sum_ k  e.  ( y  u.  { z } ) B )  e.  ( J  Cn  K
) )
105104ex 114 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( x  e.  X  |->  sum_ k  e.  y  B )  e.  ( J  Cn  K
)  ->  ( x  e.  X  |->  sum_ k  e.  ( y  u.  {
z } ) B )  e.  ( J  Cn  K ) ) )
106 fsumcn.5 . 2  |-  ( ph  ->  A  e.  Fin )
1073, 6, 9, 12, 21, 105, 106findcard2sd 6834 1  |-  ( ph  ->  ( x  e.  X  |-> 
sum_ k  e.  A  B )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   [_csb 3031    \ cdif 3099    u. cun 3100    i^i cin 3101    C_ wss 3102   (/)c0 3394   {csn 3560    |-> cmpt 4025    o. ccom 4589   -->wf 5165   ` cfv 5169  (class class class)co 5821   Fincfn 6682   CCcc 7724   0cc0 7726    + caddc 7729    - cmin 8040   abscabs 10890   sum_csu 11243   MetOpencmopn 12356  TopOnctopon 12379    Cn ccn 12556    tX ctx 12623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846  ax-addf 7848
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-isom 5178  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-map 6592  df-en 6683  df-dom 6684  df-fin 6685  df-sup 6924  df-inf 6925  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-q 9522  df-rp 9554  df-xneg 9672  df-xadd 9673  df-fz 9906  df-fzo 10035  df-seqfrec 10338  df-exp 10412  df-ihash 10643  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892  df-clim 11169  df-sumdc 11244  df-topgen 12343  df-psmet 12358  df-xmet 12359  df-met 12360  df-bl 12361  df-mopn 12362  df-top 12367  df-topon 12380  df-bases 12412  df-cn 12559  df-cnp 12560  df-tx 12624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator