| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modfsummod | Unicode version | ||
| Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
| Ref | Expression |
|---|---|
| modfsummod.n |
|
| modfsummod.1 |
|
| modfsummod.2 |
|
| Ref | Expression |
|---|---|
| modfsummod |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modfsummod.2 |
. 2
| |
| 2 | modfsummod.n |
. 2
| |
| 3 | modfsummod.1 |
. . 3
| |
| 4 | raleq 2703 |
. . . . . 6
| |
| 5 | 4 | anbi1d 465 |
. . . . 5
|
| 6 | sumeq1 11716 |
. . . . . . 7
| |
| 7 | 6 | oveq1d 5969 |
. . . . . 6
|
| 8 | sumeq1 11716 |
. . . . . . 7
| |
| 9 | 8 | oveq1d 5969 |
. . . . . 6
|
| 10 | 7, 9 | eqeq12d 2221 |
. . . . 5
|
| 11 | 5, 10 | imbi12d 234 |
. . . 4
|
| 12 | raleq 2703 |
. . . . . 6
| |
| 13 | 12 | anbi1d 465 |
. . . . 5
|
| 14 | sumeq1 11716 |
. . . . . . 7
| |
| 15 | 14 | oveq1d 5969 |
. . . . . 6
|
| 16 | sumeq1 11716 |
. . . . . . 7
| |
| 17 | 16 | oveq1d 5969 |
. . . . . 6
|
| 18 | 15, 17 | eqeq12d 2221 |
. . . . 5
|
| 19 | 13, 18 | imbi12d 234 |
. . . 4
|
| 20 | raleq 2703 |
. . . . . 6
| |
| 21 | 20 | anbi1d 465 |
. . . . 5
|
| 22 | sumeq1 11716 |
. . . . . . 7
| |
| 23 | 22 | oveq1d 5969 |
. . . . . 6
|
| 24 | sumeq1 11716 |
. . . . . . 7
| |
| 25 | 24 | oveq1d 5969 |
. . . . . 6
|
| 26 | 23, 25 | eqeq12d 2221 |
. . . . 5
|
| 27 | 21, 26 | imbi12d 234 |
. . . 4
|
| 28 | raleq 2703 |
. . . . . 6
| |
| 29 | 28 | anbi1d 465 |
. . . . 5
|
| 30 | sumeq1 11716 |
. . . . . . 7
| |
| 31 | 30 | oveq1d 5969 |
. . . . . 6
|
| 32 | sumeq1 11716 |
. . . . . . 7
| |
| 33 | 32 | oveq1d 5969 |
. . . . . 6
|
| 34 | 31, 33 | eqeq12d 2221 |
. . . . 5
|
| 35 | 29, 34 | imbi12d 234 |
. . . 4
|
| 36 | sum0 11749 |
. . . . . . 7
| |
| 37 | 36 | oveq1i 5964 |
. . . . . 6
|
| 38 | sum0 11749 |
. . . . . . . 8
| |
| 39 | 38 | a1i 9 |
. . . . . . 7
|
| 40 | 39 | oveq1d 5969 |
. . . . . 6
|
| 41 | 37, 40 | eqtr4id 2258 |
. . . . 5
|
| 42 | 41 | adantl 277 |
. . . 4
|
| 43 | simp-4l 541 |
. . . . . . . . . 10
| |
| 44 | simprr 531 |
. . . . . . . . . . 11
| |
| 45 | 44 | ad2antrr 488 |
. . . . . . . . . 10
|
| 46 | simprl 529 |
. . . . . . . . . . . 12
| |
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . 11
|
| 48 | simplr 528 |
. . . . . . . . . . 11
| |
| 49 | ralun 3357 |
. . . . . . . . . . 11
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. . . . . . . . . 10
|
| 51 | simplr 528 |
. . . . . . . . . . 11
| |
| 52 | 51 | ad2antrr 488 |
. . . . . . . . . 10
|
| 53 | simpr 110 |
. . . . . . . . . 10
| |
| 54 | 43, 45, 50, 52, 53 | modfsummodlemstep 11818 |
. . . . . . . . 9
|
| 55 | 54 | exp31 364 |
. . . . . . . 8
|
| 56 | 55 | com23 78 |
. . . . . . 7
|
| 57 | 56 | ex 115 |
. . . . . 6
|
| 58 | 57 | a2d 26 |
. . . . 5
|
| 59 | ralunb 3356 |
. . . . . . . 8
| |
| 60 | 59 | anbi1i 458 |
. . . . . . 7
|
| 61 | 60 | imbi1i 238 |
. . . . . 6
|
| 62 | an32 562 |
. . . . . . 7
| |
| 63 | 62 | imbi1i 238 |
. . . . . 6
|
| 64 | impexp 263 |
. . . . . 6
| |
| 65 | 61, 63, 64 | 3bitri 206 |
. . . . 5
|
| 66 | 58, 65 | imbitrrdi 162 |
. . . 4
|
| 67 | 11, 19, 27, 35, 42, 66 | findcard2s 6999 |
. . 3
|
| 68 | 3, 67 | syl 14 |
. 2
|
| 69 | 1, 2, 68 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-frec 6487 df-1o 6512 df-oadd 6516 df-er 6630 df-en 6838 df-dom 6839 df-fin 6840 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-fz 10144 df-fzo 10278 df-fl 10426 df-mod 10481 df-seqfrec 10606 df-exp 10697 df-ihash 10934 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-clim 11640 df-sumdc 11715 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |