Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modfsummod | Unicode version |
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
modfsummod.n | |
modfsummod.1 | |
modfsummod.2 |
Ref | Expression |
---|---|
modfsummod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modfsummod.2 | . 2 | |
2 | modfsummod.n | . 2 | |
3 | modfsummod.1 | . . 3 | |
4 | raleq 2661 | . . . . . 6 | |
5 | 4 | anbi1d 461 | . . . . 5 |
6 | sumeq1 11296 | . . . . . . 7 | |
7 | 6 | oveq1d 5857 | . . . . . 6 |
8 | sumeq1 11296 | . . . . . . 7 | |
9 | 8 | oveq1d 5857 | . . . . . 6 |
10 | 7, 9 | eqeq12d 2180 | . . . . 5 |
11 | 5, 10 | imbi12d 233 | . . . 4 |
12 | raleq 2661 | . . . . . 6 | |
13 | 12 | anbi1d 461 | . . . . 5 |
14 | sumeq1 11296 | . . . . . . 7 | |
15 | 14 | oveq1d 5857 | . . . . . 6 |
16 | sumeq1 11296 | . . . . . . 7 | |
17 | 16 | oveq1d 5857 | . . . . . 6 |
18 | 15, 17 | eqeq12d 2180 | . . . . 5 |
19 | 13, 18 | imbi12d 233 | . . . 4 |
20 | raleq 2661 | . . . . . 6 | |
21 | 20 | anbi1d 461 | . . . . 5 |
22 | sumeq1 11296 | . . . . . . 7 | |
23 | 22 | oveq1d 5857 | . . . . . 6 |
24 | sumeq1 11296 | . . . . . . 7 | |
25 | 24 | oveq1d 5857 | . . . . . 6 |
26 | 23, 25 | eqeq12d 2180 | . . . . 5 |
27 | 21, 26 | imbi12d 233 | . . . 4 |
28 | raleq 2661 | . . . . . 6 | |
29 | 28 | anbi1d 461 | . . . . 5 |
30 | sumeq1 11296 | . . . . . . 7 | |
31 | 30 | oveq1d 5857 | . . . . . 6 |
32 | sumeq1 11296 | . . . . . . 7 | |
33 | 32 | oveq1d 5857 | . . . . . 6 |
34 | 31, 33 | eqeq12d 2180 | . . . . 5 |
35 | 29, 34 | imbi12d 233 | . . . 4 |
36 | sum0 11329 | . . . . . . 7 | |
37 | 36 | oveq1i 5852 | . . . . . 6 |
38 | sum0 11329 | . . . . . . . 8 | |
39 | 38 | a1i 9 | . . . . . . 7 |
40 | 39 | oveq1d 5857 | . . . . . 6 |
41 | 37, 40 | eqtr4id 2218 | . . . . 5 |
42 | 41 | adantl 275 | . . . 4 |
43 | simp-4l 531 | . . . . . . . . . 10 | |
44 | simprr 522 | . . . . . . . . . . 11 | |
45 | 44 | ad2antrr 480 | . . . . . . . . . 10 |
46 | simprl 521 | . . . . . . . . . . . 12 | |
47 | 46 | ad2antrr 480 | . . . . . . . . . . 11 |
48 | simplr 520 | . . . . . . . . . . 11 | |
49 | ralun 3304 | . . . . . . . . . . 11 | |
50 | 47, 48, 49 | syl2anc 409 | . . . . . . . . . 10 |
51 | simplr 520 | . . . . . . . . . . 11 | |
52 | 51 | ad2antrr 480 | . . . . . . . . . 10 |
53 | simpr 109 | . . . . . . . . . 10 | |
54 | 43, 45, 50, 52, 53 | modfsummodlemstep 11398 | . . . . . . . . 9 |
55 | 54 | exp31 362 | . . . . . . . 8 |
56 | 55 | com23 78 | . . . . . . 7 |
57 | 56 | ex 114 | . . . . . 6 |
58 | 57 | a2d 26 | . . . . 5 |
59 | ralunb 3303 | . . . . . . . 8 | |
60 | 59 | anbi1i 454 | . . . . . . 7 |
61 | 60 | imbi1i 237 | . . . . . 6 |
62 | an32 552 | . . . . . . 7 | |
63 | 62 | imbi1i 237 | . . . . . 6 |
64 | impexp 261 | . . . . . 6 | |
65 | 61, 63, 64 | 3bitri 205 | . . . . 5 |
66 | 58, 65 | syl6ibr 161 | . . . 4 |
67 | 11, 19, 27, 35, 42, 66 | findcard2s 6856 | . . 3 |
68 | 3, 67 | syl 14 | . 2 |
69 | 1, 2, 68 | mp2and 430 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cun 3114 c0 3409 csn 3576 (class class class)co 5842 cfn 6706 cc0 7753 cn 8857 cz 9191 cmo 10257 csu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-fz 9945 df-fzo 10078 df-fl 10205 df-mod 10258 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |