Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modfsummod | Unicode version |
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
modfsummod.n | |
modfsummod.1 | |
modfsummod.2 |
Ref | Expression |
---|---|
modfsummod |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modfsummod.2 | . 2 | |
2 | modfsummod.n | . 2 | |
3 | modfsummod.1 | . . 3 | |
4 | raleq 2649 | . . . . . 6 | |
5 | 4 | anbi1d 461 | . . . . 5 |
6 | sumeq1 11229 | . . . . . . 7 | |
7 | 6 | oveq1d 5829 | . . . . . 6 |
8 | sumeq1 11229 | . . . . . . 7 | |
9 | 8 | oveq1d 5829 | . . . . . 6 |
10 | 7, 9 | eqeq12d 2169 | . . . . 5 |
11 | 5, 10 | imbi12d 233 | . . . 4 |
12 | raleq 2649 | . . . . . 6 | |
13 | 12 | anbi1d 461 | . . . . 5 |
14 | sumeq1 11229 | . . . . . . 7 | |
15 | 14 | oveq1d 5829 | . . . . . 6 |
16 | sumeq1 11229 | . . . . . . 7 | |
17 | 16 | oveq1d 5829 | . . . . . 6 |
18 | 15, 17 | eqeq12d 2169 | . . . . 5 |
19 | 13, 18 | imbi12d 233 | . . . 4 |
20 | raleq 2649 | . . . . . 6 | |
21 | 20 | anbi1d 461 | . . . . 5 |
22 | sumeq1 11229 | . . . . . . 7 | |
23 | 22 | oveq1d 5829 | . . . . . 6 |
24 | sumeq1 11229 | . . . . . . 7 | |
25 | 24 | oveq1d 5829 | . . . . . 6 |
26 | 23, 25 | eqeq12d 2169 | . . . . 5 |
27 | 21, 26 | imbi12d 233 | . . . 4 |
28 | raleq 2649 | . . . . . 6 | |
29 | 28 | anbi1d 461 | . . . . 5 |
30 | sumeq1 11229 | . . . . . . 7 | |
31 | 30 | oveq1d 5829 | . . . . . 6 |
32 | sumeq1 11229 | . . . . . . 7 | |
33 | 32 | oveq1d 5829 | . . . . . 6 |
34 | 31, 33 | eqeq12d 2169 | . . . . 5 |
35 | 29, 34 | imbi12d 233 | . . . 4 |
36 | sum0 11262 | . . . . . . 7 | |
37 | 36 | oveq1i 5824 | . . . . . 6 |
38 | sum0 11262 | . . . . . . . 8 | |
39 | 38 | a1i 9 | . . . . . . 7 |
40 | 39 | oveq1d 5829 | . . . . . 6 |
41 | 37, 40 | eqtr4id 2206 | . . . . 5 |
42 | 41 | adantl 275 | . . . 4 |
43 | simp-4l 531 | . . . . . . . . . 10 | |
44 | simprr 522 | . . . . . . . . . . 11 | |
45 | 44 | ad2antrr 480 | . . . . . . . . . 10 |
46 | simprl 521 | . . . . . . . . . . . 12 | |
47 | 46 | ad2antrr 480 | . . . . . . . . . . 11 |
48 | simplr 520 | . . . . . . . . . . 11 | |
49 | ralun 3285 | . . . . . . . . . . 11 | |
50 | 47, 48, 49 | syl2anc 409 | . . . . . . . . . 10 |
51 | simplr 520 | . . . . . . . . . . 11 | |
52 | 51 | ad2antrr 480 | . . . . . . . . . 10 |
53 | simpr 109 | . . . . . . . . . 10 | |
54 | 43, 45, 50, 52, 53 | modfsummodlemstep 11331 | . . . . . . . . 9 |
55 | 54 | exp31 362 | . . . . . . . 8 |
56 | 55 | com23 78 | . . . . . . 7 |
57 | 56 | ex 114 | . . . . . 6 |
58 | 57 | a2d 26 | . . . . 5 |
59 | ralunb 3284 | . . . . . . . 8 | |
60 | 59 | anbi1i 454 | . . . . . . 7 |
61 | 60 | imbi1i 237 | . . . . . 6 |
62 | an32 552 | . . . . . . 7 | |
63 | 62 | imbi1i 237 | . . . . . 6 |
64 | impexp 261 | . . . . . 6 | |
65 | 61, 63, 64 | 3bitri 205 | . . . . 5 |
66 | 58, 65 | syl6ibr 161 | . . . 4 |
67 | 11, 19, 27, 35, 42, 66 | findcard2s 6824 | . . 3 |
68 | 3, 67 | syl 14 | . 2 |
69 | 1, 2, 68 | mp2and 430 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1332 wcel 2125 wral 2432 cun 3096 c0 3390 csn 3556 (class class class)co 5814 cfn 6674 cc0 7711 cn 8812 cz 9146 cmo 10199 csu 11227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 ax-arch 7830 ax-caucvg 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-isom 5172 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-frec 6328 df-1o 6353 df-oadd 6357 df-er 6469 df-en 6675 df-dom 6676 df-fin 6677 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-3 8872 df-4 8873 df-n0 9070 df-z 9147 df-uz 9419 df-q 9507 df-rp 9539 df-fz 9891 df-fzo 10020 df-fl 10147 df-mod 10200 df-seqfrec 10323 df-exp 10397 df-ihash 10627 df-cj 10719 df-re 10720 df-im 10721 df-rsqrt 10875 df-abs 10876 df-clim 11153 df-sumdc 11228 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |