ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummod Unicode version

Theorem modfsummod 11227
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n  |-  ( ph  ->  N  e.  NN )
modfsummod.1  |-  ( ph  ->  A  e.  Fin )
modfsummod.2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
Assertion
Ref Expression
modfsummod  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Distinct variable groups:    A, k    k, N
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem modfsummod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
2 modfsummod.n . 2  |-  ( ph  ->  N  e.  NN )
3 modfsummod.1 . . 3  |-  ( ph  ->  A  e.  Fin )
4 raleq 2626 . . . . . 6  |-  ( x  =  (/)  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  (/)  B  e.  ZZ ) )
54anbi1d 460 . . . . 5  |-  ( x  =  (/)  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN ) ) )
6 sumeq1 11124 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  B  =  sum_ k  e.  (/)  B )
76oveq1d 5789 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  (/)  B  mod  N ) )
8 sumeq1 11124 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  (/)  ( B  mod  N ) )
98oveq1d 5789 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  ( B  mod  N )  mod 
N )  =  (
sum_ k  e.  (/)  ( B  mod  N )  mod  N ) )
107, 9eqeq12d 2154 . . . . 5  |-  ( x  =  (/)  ->  ( (
sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) )
115, 10imbi12d 233 . . . 4  |-  ( x  =  (/)  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) ) )
12 raleq 2626 . . . . . 6  |-  ( x  =  y  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  y  B  e.  ZZ ) )
1312anbi1d 460 . . . . 5  |-  ( x  =  y  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) ) )
14 sumeq1 11124 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  B  =  sum_ k  e.  y  B )
1514oveq1d 5789 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  y  B  mod  N ) )
16 sumeq1 11124 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  y  ( B  mod  N ) )
1716oveq1d 5789 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
1815, 17eqeq12d 2154 . . . . 5  |-  ( x  =  y  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
) )
1913, 18imbi12d 233 . . . 4  |-  ( x  =  y  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
) ) )
20 raleq 2626 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. k  e.  x  B  e.  ZZ 
<-> 
A. k  e.  ( y  u.  { z } ) B  e.  ZZ ) )
2120anbi1d 460 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )
) )
22 sumeq1 11124 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
2322oveq1d 5789 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N ) )
24 sumeq1 11124 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  ( y  u.  { z } ) ( B  mod  N ) )
2524oveq1d 5789 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)
2623, 25eqeq12d 2154 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) )
2721, 26imbi12d 233 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N ) )  <-> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
28 raleq 2626 . . . . . 6  |-  ( x  =  A  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  A  B  e.  ZZ ) )
2928anbi1d 460 . . . . 5  |-  ( x  =  A  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN ) ) )
30 sumeq1 11124 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  B  =  sum_ k  e.  A  B
)
3130oveq1d 5789 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  A  B  mod  N ) )
32 sumeq1 11124 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  A  ( B  mod  N ) )
3332oveq1d 5789 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
3431, 33eqeq12d 2154 . . . . 5  |-  ( x  =  A  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) )
3529, 34imbi12d 233 . . . 4  |-  ( x  =  A  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) ) )
36 sum0 11157 . . . . . . . 8  |-  sum_ k  e.  (/)  ( B  mod  N )  =  0
3736a1i 9 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  (/)  ( B  mod  N )  =  0 )
3837oveq1d 5789 . . . . . 6  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N )  =  ( 0  mod  N ) )
39 sum0 11157 . . . . . . 7  |-  sum_ k  e.  (/)  B  =  0
4039oveq1i 5784 . . . . . 6  |-  ( sum_ k  e.  (/)  B  mod  N )  =  ( 0  mod  N )
4138, 40syl6reqr 2191 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
4241adantl 275 . . . 4  |-  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
43 simp-4l 530 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  y  e.  Fin )
44 simprr 521 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  N  e.  NN )
4544ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  N  e.  NN )
46 simprl 520 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  A. k  e.  y  B  e.  ZZ )
4746ad2antrr 479 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  y  B  e.  ZZ )
48 simplr 519 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  { z } B  e.  ZZ )
49 ralun 3258 . . . . . . . . . . 11  |-  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  ->  A. k  e.  ( y  u.  { z } ) B  e.  ZZ )
5047, 48, 49syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  ( y  u.  {
z } ) B  e.  ZZ )
51 simplr 519 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  -.  z  e.  y
)
5251ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  -.  z  e.  y )
53 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
5443, 45, 50, 52, 53modfsummodlemstep 11226 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) )
5554exp31 361 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( A. k  e. 
{ z } B  e.  ZZ  ->  ( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5655com23 78 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5756ex 114 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  (
( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod  N
)  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) ) )
5857a2d 26 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) ) ) )
59 ralunb 3257 . . . . . . . 8  |-  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
6059anbi1i 453 . . . . . . 7  |-  ( ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN ) )
6160imbi1i 237 . . . . . 6  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  {
z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N )  mod 
N ) ) )
62 an32 551 . . . . . . 7  |-  ( ( ( A. k  e.  y  B  e.  ZZ  /\ 
A. k  e.  {
z } B  e.  ZZ )  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  { z } B  e.  ZZ ) )
6362imbi1i 237 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e. 
{ z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  {
z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) )
64 impexp 261 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e. 
{ z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6561, 63, 643bitri 205 . . . . 5  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6658, 65syl6ibr 161 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6711, 19, 27, 35, 42, 66findcard2s 6784 . . 3  |-  ( A  e.  Fin  ->  (
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
683, 67syl 14 . 2  |-  ( ph  ->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
691, 2, 68mp2and 429 1  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416    u. cun 3069   (/)c0 3363   {csn 3527  (class class class)co 5774   Fincfn 6634   0cc0 7620   NNcn 8720   ZZcz 9054    mod cmo 10095   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator