ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummod Unicode version

Theorem modfsummod 11819
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n  |-  ( ph  ->  N  e.  NN )
modfsummod.1  |-  ( ph  ->  A  e.  Fin )
modfsummod.2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
Assertion
Ref Expression
modfsummod  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Distinct variable groups:    A, k    k, N
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem modfsummod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
2 modfsummod.n . 2  |-  ( ph  ->  N  e.  NN )
3 modfsummod.1 . . 3  |-  ( ph  ->  A  e.  Fin )
4 raleq 2703 . . . . . 6  |-  ( x  =  (/)  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  (/)  B  e.  ZZ ) )
54anbi1d 465 . . . . 5  |-  ( x  =  (/)  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN ) ) )
6 sumeq1 11716 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  B  =  sum_ k  e.  (/)  B )
76oveq1d 5969 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  (/)  B  mod  N ) )
8 sumeq1 11716 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  (/)  ( B  mod  N ) )
98oveq1d 5969 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  ( B  mod  N )  mod 
N )  =  (
sum_ k  e.  (/)  ( B  mod  N )  mod  N ) )
107, 9eqeq12d 2221 . . . . 5  |-  ( x  =  (/)  ->  ( (
sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) )
115, 10imbi12d 234 . . . 4  |-  ( x  =  (/)  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) ) )
12 raleq 2703 . . . . . 6  |-  ( x  =  y  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  y  B  e.  ZZ ) )
1312anbi1d 465 . . . . 5  |-  ( x  =  y  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) ) )
14 sumeq1 11716 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  B  =  sum_ k  e.  y  B )
1514oveq1d 5969 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  y  B  mod  N ) )
16 sumeq1 11716 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  y  ( B  mod  N ) )
1716oveq1d 5969 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
1815, 17eqeq12d 2221 . . . . 5  |-  ( x  =  y  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
) )
1913, 18imbi12d 234 . . . 4  |-  ( x  =  y  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
) ) )
20 raleq 2703 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. k  e.  x  B  e.  ZZ 
<-> 
A. k  e.  ( y  u.  { z } ) B  e.  ZZ ) )
2120anbi1d 465 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )
) )
22 sumeq1 11716 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
2322oveq1d 5969 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N ) )
24 sumeq1 11716 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  ( y  u.  { z } ) ( B  mod  N ) )
2524oveq1d 5969 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)
2623, 25eqeq12d 2221 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) )
2721, 26imbi12d 234 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N ) )  <-> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
28 raleq 2703 . . . . . 6  |-  ( x  =  A  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  A  B  e.  ZZ ) )
2928anbi1d 465 . . . . 5  |-  ( x  =  A  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN ) ) )
30 sumeq1 11716 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  B  =  sum_ k  e.  A  B
)
3130oveq1d 5969 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  A  B  mod  N ) )
32 sumeq1 11716 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  A  ( B  mod  N ) )
3332oveq1d 5969 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
3431, 33eqeq12d 2221 . . . . 5  |-  ( x  =  A  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) )
3529, 34imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) ) )
36 sum0 11749 . . . . . . 7  |-  sum_ k  e.  (/)  B  =  0
3736oveq1i 5964 . . . . . 6  |-  ( sum_ k  e.  (/)  B  mod  N )  =  ( 0  mod  N )
38 sum0 11749 . . . . . . . 8  |-  sum_ k  e.  (/)  ( B  mod  N )  =  0
3938a1i 9 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  (/)  ( B  mod  N )  =  0 )
4039oveq1d 5969 . . . . . 6  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N )  =  ( 0  mod  N ) )
4137, 40eqtr4id 2258 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
4241adantl 277 . . . 4  |-  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
43 simp-4l 541 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  y  e.  Fin )
44 simprr 531 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  N  e.  NN )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  N  e.  NN )
46 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  A. k  e.  y  B  e.  ZZ )
4746ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  y  B  e.  ZZ )
48 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  { z } B  e.  ZZ )
49 ralun 3357 . . . . . . . . . . 11  |-  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  ->  A. k  e.  ( y  u.  { z } ) B  e.  ZZ )
5047, 48, 49syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  ( y  u.  {
z } ) B  e.  ZZ )
51 simplr 528 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  -.  z  e.  y
)
5251ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  -.  z  e.  y )
53 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
5443, 45, 50, 52, 53modfsummodlemstep 11818 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) )
5554exp31 364 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( A. k  e. 
{ z } B  e.  ZZ  ->  ( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5655com23 78 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5756ex 115 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  (
( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod  N
)  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) ) )
5857a2d 26 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) ) ) )
59 ralunb 3356 . . . . . . . 8  |-  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
6059anbi1i 458 . . . . . . 7  |-  ( ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN ) )
6160imbi1i 238 . . . . . 6  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  {
z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N )  mod 
N ) ) )
62 an32 562 . . . . . . 7  |-  ( ( ( A. k  e.  y  B  e.  ZZ  /\ 
A. k  e.  {
z } B  e.  ZZ )  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  { z } B  e.  ZZ ) )
6362imbi1i 238 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e. 
{ z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  {
z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) )
64 impexp 263 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e. 
{ z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6561, 63, 643bitri 206 . . . . 5  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6658, 65imbitrrdi 162 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6711, 19, 27, 35, 42, 66findcard2s 6999 . . 3  |-  ( A  e.  Fin  ->  (
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
683, 67syl 14 . 2  |-  ( ph  ->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
691, 2, 68mp2and 433 1  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485    u. cun 3166   (/)c0 3462   {csn 3635  (class class class)co 5954   Fincfn 6837   0cc0 7938   NNcn 9049   ZZcz 9385    mod cmo 10480   sum_csu 11714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-oadd 6516  df-er 6630  df-en 6838  df-dom 6839  df-fin 6840  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-ihash 10934  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator