ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modfsummod Unicode version

Theorem modfsummod 11466
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n  |-  ( ph  ->  N  e.  NN )
modfsummod.1  |-  ( ph  ->  A  e.  Fin )
modfsummod.2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
Assertion
Ref Expression
modfsummod  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Distinct variable groups:    A, k    k, N
Allowed substitution hints:    ph( k)    B( k)

Proof of Theorem modfsummod
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
2 modfsummod.n . 2  |-  ( ph  ->  N  e.  NN )
3 modfsummod.1 . . 3  |-  ( ph  ->  A  e.  Fin )
4 raleq 2673 . . . . . 6  |-  ( x  =  (/)  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  (/)  B  e.  ZZ ) )
54anbi1d 465 . . . . 5  |-  ( x  =  (/)  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN ) ) )
6 sumeq1 11363 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  B  =  sum_ k  e.  (/)  B )
76oveq1d 5890 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  (/)  B  mod  N ) )
8 sumeq1 11363 . . . . . . 7  |-  ( x  =  (/)  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  (/)  ( B  mod  N ) )
98oveq1d 5890 . . . . . 6  |-  ( x  =  (/)  ->  ( sum_ k  e.  x  ( B  mod  N )  mod 
N )  =  (
sum_ k  e.  (/)  ( B  mod  N )  mod  N ) )
107, 9eqeq12d 2192 . . . . 5  |-  ( x  =  (/)  ->  ( (
sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) )
115, 10imbi12d 234 . . . 4  |-  ( x  =  (/)  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) ) ) )
12 raleq 2673 . . . . . 6  |-  ( x  =  y  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  y  B  e.  ZZ ) )
1312anbi1d 465 . . . . 5  |-  ( x  =  y  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) ) )
14 sumeq1 11363 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  B  =  sum_ k  e.  y  B )
1514oveq1d 5890 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  y  B  mod  N ) )
16 sumeq1 11363 . . . . . . 7  |-  ( x  =  y  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  y  ( B  mod  N ) )
1716oveq1d 5890 . . . . . 6  |-  ( x  =  y  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
1815, 17eqeq12d 2192 . . . . 5  |-  ( x  =  y  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
) )
1913, 18imbi12d 234 . . . 4  |-  ( x  =  y  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
) ) )
20 raleq 2673 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. k  e.  x  B  e.  ZZ 
<-> 
A. k  e.  ( y  u.  { z } ) B  e.  ZZ ) )
2120anbi1d 465 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <->  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )
) )
22 sumeq1 11363 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  B  =  sum_ k  e.  ( y  u.  {
z } ) B )
2322oveq1d 5890 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N ) )
24 sumeq1 11363 . . . . . . 7  |-  ( x  =  ( y  u. 
{ z } )  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  ( y  u.  { z } ) ( B  mod  N ) )
2524oveq1d 5890 . . . . . 6  |-  ( x  =  ( y  u. 
{ z } )  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)
2623, 25eqeq12d 2192 . . . . 5  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( sum_ k  e.  x  B  mod  N )  =  (
sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) )
2721, 26imbi12d 234 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N ) )  <-> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
28 raleq 2673 . . . . . 6  |-  ( x  =  A  ->  ( A. k  e.  x  B  e.  ZZ  <->  A. k  e.  A  B  e.  ZZ ) )
2928anbi1d 465 . . . . 5  |-  ( x  =  A  ->  (
( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  <-> 
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN ) ) )
30 sumeq1 11363 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  B  =  sum_ k  e.  A  B
)
3130oveq1d 5890 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  A  B  mod  N ) )
32 sumeq1 11363 . . . . . . 7  |-  ( x  =  A  ->  sum_ k  e.  x  ( B  mod  N )  =  sum_ k  e.  A  ( B  mod  N ) )
3332oveq1d 5890 . . . . . 6  |-  ( x  =  A  ->  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
3431, 33eqeq12d 2192 . . . . 5  |-  ( x  =  A  ->  (
( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod  N )  <->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) )
3529, 34imbi12d 234 . . . 4  |-  ( x  =  A  ->  (
( ( A. k  e.  x  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  x  B  mod  N )  =  ( sum_ k  e.  x  ( B  mod  N )  mod 
N ) )  <->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  (
sum_ k  e.  A  ( B  mod  N )  mod  N ) ) ) )
36 sum0 11396 . . . . . . 7  |-  sum_ k  e.  (/)  B  =  0
3736oveq1i 5885 . . . . . 6  |-  ( sum_ k  e.  (/)  B  mod  N )  =  ( 0  mod  N )
38 sum0 11396 . . . . . . . 8  |-  sum_ k  e.  (/)  ( B  mod  N )  =  0
3938a1i 9 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  (/)  ( B  mod  N )  =  0 )
4039oveq1d 5890 . . . . . 6  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N )  =  ( 0  mod  N ) )
4137, 40eqtr4id 2229 . . . . 5  |-  ( N  e.  NN  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
4241adantl 277 . . . 4  |-  ( ( A. k  e.  (/)  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  (/)  B  mod  N )  =  ( sum_ k  e.  (/)  ( B  mod  N )  mod 
N ) )
43 simp-4l 541 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  y  e.  Fin )
44 simprr 531 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  N  e.  NN )
4544ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  N  e.  NN )
46 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  A. k  e.  y  B  e.  ZZ )
4746ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  y  B  e.  ZZ )
48 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  { z } B  e.  ZZ )
49 ralun 3318 . . . . . . . . . . 11  |-  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  ->  A. k  e.  ( y  u.  { z } ) B  e.  ZZ )
5047, 48, 49syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  A. k  e.  ( y  u.  {
z } ) B  e.  ZZ )
51 simplr 528 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  ->  -.  z  e.  y
)
5251ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  -.  z  e.  y )
53 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  y  B  mod  N )  =  (
sum_ k  e.  y  ( B  mod  N
)  mod  N )
)
5443, 45, 50, 52, 53modfsummodlemstep 11465 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  Fin  /\  -.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  /\  A. k  e.  { z } B  e.  ZZ )  /\  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )
)  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) )
5554exp31 364 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( A. k  e. 
{ z } B  e.  ZZ  ->  ( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N
)  mod  N )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5655com23 78 . . . . . . 7  |-  ( ( ( y  e.  Fin  /\ 
-.  z  e.  y )  /\  ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN ) )  -> 
( ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
5756ex 115 . . . . . 6  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  (
( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod  N
)  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) ) )
5857a2d 26 . . . . 5  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  {
z } ) ( B  mod  N )  mod  N ) ) ) ) )
59 ralunb 3317 . . . . . . . 8  |-  ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  <->  ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ ) )
6059anbi1i 458 . . . . . . 7  |-  ( ( A. k  e.  ( y  u.  { z } ) B  e.  ZZ  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN ) )
6160imbi1i 238 . . . . . 6  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e.  { z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  {
z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N )  mod 
N ) ) )
62 an32 562 . . . . . . 7  |-  ( ( ( A. k  e.  y  B  e.  ZZ  /\ 
A. k  e.  {
z } B  e.  ZZ )  /\  N  e.  NN )  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  { z } B  e.  ZZ ) )
6362imbi1i 238 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  A. k  e. 
{ z } B  e.  ZZ )  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e.  {
z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) )
64 impexp 263 . . . . . 6  |-  ( ( ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  /\  A. k  e. 
{ z } B  e.  ZZ )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6561, 63, 643bitri 206 . . . . 5  |-  ( ( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
)  <->  ( ( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( A. k  e.  { z } B  e.  ZZ  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N )  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6658, 65imbitrrdi 162 . . . 4  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( (
( A. k  e.  y  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  y  B  mod  N )  =  ( sum_ k  e.  y  ( B  mod  N )  mod 
N ) )  -> 
( ( A. k  e.  ( y  u.  {
z } ) B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  ( y  u.  { z } ) B  mod  N
)  =  ( sum_ k  e.  ( y  u.  { z } ) ( B  mod  N
)  mod  N )
) ) )
6711, 19, 27, 35, 42, 66findcard2s 6890 . . 3  |-  ( A  e.  Fin  ->  (
( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
683, 67syl 14 . 2  |-  ( ph  ->  ( ( A. k  e.  A  B  e.  ZZ  /\  N  e.  NN )  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod 
N ) ) )
691, 2, 68mp2and 433 1  |-  ( ph  ->  ( sum_ k  e.  A  B  mod  N )  =  ( sum_ k  e.  A  ( B  mod  N )  mod  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455    u. cun 3128   (/)c0 3423   {csn 3593  (class class class)co 5875   Fincfn 6740   0cc0 7811   NNcn 8919   ZZcz 9253    mod cmo 10322   sum_csu 11361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-isom 5226  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-irdg 6371  df-frec 6392  df-1o 6417  df-oadd 6421  df-er 6535  df-en 6741  df-dom 6742  df-fin 6743  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-q 9620  df-rp 9654  df-fz 10009  df-fzo 10143  df-fl 10270  df-mod 10323  df-seqfrec 10446  df-exp 10520  df-ihash 10756  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287  df-sumdc 11362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator