ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisol Unicode version

Theorem nninfisol 7235
Description: Finite elements of ℕ are isolated. That is, given a natural number and any element of ℕ, it is decidable whether the natural number (when converted to an element of ℕ) is equal to the given element of ℕ. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence  X to decide whether it is equal to  N (in fact, you only need to look at two elements and  N tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7282). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

Assertion
Ref Expression
nninfisol  |-  ( ( N  e.  om  /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable groups:    i, N    i, X

Proof of Theorem nninfisol
StepHypRef Expression
1 simpllr 534 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  X  e. )
2 simplr 528 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  ( X `  N )  =  (/) )
3 simplll 533 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  N  e.  om )
4 simpr 110 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  N  =  (/) )
51, 2, 3, 4nninfisollem0 7232 . . 3  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
6 simp-4r 542 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  X  e. )
7 simpllr 534 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  ( X `  N )  =  (/) )
8 simp-4l 541 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  N  e.  om )
9 simpr 110 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  ->  -.  N  =  (/) )
109neqned 2383 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  ->  N  =/=  (/) )
1110adantr 276 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  N  =/=  (/) )
12 simpr 110 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  ( X `  U. N )  =  (/) )
136, 7, 8, 11, 12nninfisollemne 7233 . . . 4  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
14 simp-4r 542 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  X  e. )
15 simpllr 534 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> 
( X `  N
)  =  (/) )
16 simp-4l 541 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  N  e.  om )
1710adantr 276 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  N  =/=  (/) )
18 simpr 110 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> 
( X `  U. N )  =  1o )
1914, 15, 16, 17, 18nninfisollemeq 7234 . . . 4  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> DECID  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
20 nninff 7224 . . . . . . . . 9  |-  ( X  e.  ->  X : om --> 2o )
2120adantl 277 . . . . . . . 8  |-  ( ( N  e.  om  /\  X  e. )  ->  X : om
--> 2o )
22 nnpredcl 4671 . . . . . . . . 9  |-  ( N  e.  om  ->  U. N  e.  om )
2322adantr 276 . . . . . . . 8  |-  ( ( N  e.  om  /\  X  e. )  ->  U. N  e. 
om )
2421, 23ffvelcdmd 5716 . . . . . . 7  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  U. N )  e.  2o )
25 df2o3 6516 . . . . . . 7  |-  2o  =  { (/) ,  1o }
2624, 25eleqtrdi 2298 . . . . . 6  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  U. N )  e. 
{ (/) ,  1o }
)
27 elpri 3656 . . . . . 6  |-  ( ( X `  U. N
)  e.  { (/) ,  1o }  ->  (
( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
2826, 27syl 14 . . . . 5  |-  ( ( N  e.  om  /\  X  e. )  ->  ( ( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
2928ad2antrr 488 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  -> 
( ( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
3013, 19, 29mpjaodan 800 . . 3  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  -> DECID  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
31 nndceq0 4666 . . . . 5  |-  ( N  e.  om  -> DECID  N  =  (/) )
32 exmiddc 838 . . . . 5  |-  (DECID  N  =  (/)  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
3331, 32syl 14 . . . 4  |-  ( N  e.  om  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
3433ad2antrr 488 . . 3  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  (/) )  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
355, 30, 34mpjaodan 800 . 2  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
36 1n0 6518 . . . . . 6  |-  1o  =/=  (/)
3736neii 2378 . . . . 5  |-  -.  1o  =  (/)
38 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
3938fveq1d 5578 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  N )  =  ( X `  N ) )
40 eqid 2205 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )
41 eleq1 2268 . . . . . . . . . . 11  |-  ( i  =  N  ->  (
i  e.  N  <->  N  e.  N ) )
4241ifbid 3592 . . . . . . . . . 10  |-  ( i  =  N  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( N  e.  N ,  1o ,  (/) ) )
43 id 19 . . . . . . . . . 10  |-  ( N  e.  om  ->  N  e.  om )
44 nnord 4660 . . . . . . . . . . . . 13  |-  ( N  e.  om  ->  Ord  N )
45 ordirr 4590 . . . . . . . . . . . . 13  |-  ( Ord 
N  ->  -.  N  e.  N )
4644, 45syl 14 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  -.  N  e.  N )
4746iffalsed 3581 . . . . . . . . . . 11  |-  ( N  e.  om  ->  if ( N  e.  N ,  1o ,  (/) )  =  (/) )
48 peano1 4642 . . . . . . . . . . 11  |-  (/)  e.  om
4947, 48eqeltrdi 2296 . . . . . . . . . 10  |-  ( N  e.  om  ->  if ( N  e.  N ,  1o ,  (/) )  e. 
om )
5040, 42, 43, 49fvmptd3 5673 . . . . . . . . 9  |-  ( N  e.  om  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 N )  =  if ( N  e.  N ,  1o ,  (/) ) )
5150, 47eqtrd 2238 . . . . . . . 8  |-  ( N  e.  om  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 N )  =  (/) )
5251ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  N )  =  (/) )
53 simplr 528 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( X `  N
)  =  1o )
5439, 52, 533eqtr3rd 2247 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  1o  =  (/) )
5554ex 115 . . . . 5  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  ->  1o  =  (/) ) )
5637, 55mtoi 666 . . . 4  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
5756olcd 736 . . 3  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
58 df-dc 837 . . 3  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
5957, 58sylibr 134 . 2  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
60 simpl 109 . . . . 5  |-  ( ( N  e.  om  /\  X  e. )  ->  N  e.  om )
6121, 60ffvelcdmd 5716 . . . 4  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  N )  e.  2o )
6261, 25eleqtrdi 2298 . . 3  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  N )  e.  { (/)
,  1o } )
63 elpri 3656 . . 3  |-  ( ( X `  N )  e.  { (/) ,  1o }  ->  ( ( X `
 N )  =  (/)  \/  ( X `  N )  =  1o ) )
6462, 63syl 14 . 2  |-  ( ( N  e.  om  /\  X  e. )  ->  ( ( X `  N )  =  (/)  \/  ( X `
 N )  =  1o ) )
6535, 59, 64mpjaodan 800 1  |-  ( ( N  e.  om  /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176    =/= wne 2376   (/)c0 3460   ifcif 3571   {cpr 3634   U.cuni 3850    |-> cmpt 4105   Ord word 4409   omcom 4638   -->wf 5267   ` cfv 5271   1oc1o 6495   2oc2o 6496  ℕxnninf 7221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-map 6737  df-nninf 7222
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator