ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfisol Unicode version

Theorem nninfisol 7261
Description: Finite elements of ℕ are isolated. That is, given a natural number and any element of ℕ, it is decidable whether the natural number (when converted to an element of ℕ) is equal to the given element of ℕ. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence  X to decide whether it is equal to  N (in fact, you only need to look at two elements and  N tells you where to look).

By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7308). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.)

Assertion
Ref Expression
nninfisol  |-  ( ( N  e.  om  /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Distinct variable groups:    i, N    i, X

Proof of Theorem nninfisol
StepHypRef Expression
1 simpllr 534 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  X  e. )
2 simplr 528 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  ( X `  N )  =  (/) )
3 simplll 533 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  N  e.  om )
4 simpr 110 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  ->  N  =  (/) )
51, 2, 3, 4nninfisollem0 7258 . . 3  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  N  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
6 simp-4r 542 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  X  e. )
7 simpllr 534 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  ( X `  N )  =  (/) )
8 simp-4l 541 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  N  e.  om )
9 simpr 110 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  ->  -.  N  =  (/) )
109neqned 2385 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  ->  N  =/=  (/) )
1110adantr 276 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  N  =/=  (/) )
12 simpr 110 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  ->  ( X `  U. N )  =  (/) )
136, 7, 8, 11, 12nninfisollemne 7259 . . . 4  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
14 simp-4r 542 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  X  e. )
15 simpllr 534 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> 
( X `  N
)  =  (/) )
16 simp-4l 541 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  N  e.  om )
1710adantr 276 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  ->  N  =/=  (/) )
18 simpr 110 . . . . 5  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> 
( X `  U. N )  =  1o )
1914, 15, 16, 17, 18nninfisollemeq 7260 . . . 4  |-  ( ( ( ( ( N  e.  om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  /\  ( X `  U. N )  =  1o )  -> DECID  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
20 nninff 7250 . . . . . . . . 9  |-  ( X  e.  ->  X : om --> 2o )
2120adantl 277 . . . . . . . 8  |-  ( ( N  e.  om  /\  X  e. )  ->  X : om
--> 2o )
22 nnpredcl 4689 . . . . . . . . 9  |-  ( N  e.  om  ->  U. N  e.  om )
2322adantr 276 . . . . . . . 8  |-  ( ( N  e.  om  /\  X  e. )  ->  U. N  e. 
om )
2421, 23ffvelcdmd 5739 . . . . . . 7  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  U. N )  e.  2o )
25 df2o3 6539 . . . . . . 7  |-  2o  =  { (/) ,  1o }
2624, 25eleqtrdi 2300 . . . . . 6  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  U. N )  e. 
{ (/) ,  1o }
)
27 elpri 3666 . . . . . 6  |-  ( ( X `  U. N
)  e.  { (/) ,  1o }  ->  (
( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
2826, 27syl 14 . . . . 5  |-  ( ( N  e.  om  /\  X  e. )  ->  ( ( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
2928ad2antrr 488 . . . 4  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  -> 
( ( X `  U. N )  =  (/)  \/  ( X `  U. N )  =  1o ) )
3013, 19, 29mpjaodan 800 . . 3  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  (/) )  /\  -.  N  =  (/) )  -> DECID  (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
31 nndceq0 4684 . . . . 5  |-  ( N  e.  om  -> DECID  N  =  (/) )
32 exmiddc 838 . . . . 5  |-  (DECID  N  =  (/)  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
3331, 32syl 14 . . . 4  |-  ( N  e.  om  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
3433ad2antrr 488 . . 3  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  (/) )  ->  ( N  =  (/)  \/  -.  N  =  (/) ) )
355, 30, 34mpjaodan 800 . 2  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  (/) )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
36 1n0 6541 . . . . . 6  |-  1o  =/=  (/)
3736neii 2380 . . . . 5  |-  -.  1o  =  (/)
38 simpr 110 . . . . . . . 8  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
3938fveq1d 5601 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  N )  =  ( X `  N ) )
40 eqid 2207 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) )
41 eleq1 2270 . . . . . . . . . . 11  |-  ( i  =  N  ->  (
i  e.  N  <->  N  e.  N ) )
4241ifbid 3601 . . . . . . . . . 10  |-  ( i  =  N  ->  if ( i  e.  N ,  1o ,  (/) )  =  if ( N  e.  N ,  1o ,  (/) ) )
43 id 19 . . . . . . . . . 10  |-  ( N  e.  om  ->  N  e.  om )
44 nnord 4678 . . . . . . . . . . . . 13  |-  ( N  e.  om  ->  Ord  N )
45 ordirr 4608 . . . . . . . . . . . . 13  |-  ( Ord 
N  ->  -.  N  e.  N )
4644, 45syl 14 . . . . . . . . . . . 12  |-  ( N  e.  om  ->  -.  N  e.  N )
4746iffalsed 3589 . . . . . . . . . . 11  |-  ( N  e.  om  ->  if ( N  e.  N ,  1o ,  (/) )  =  (/) )
48 peano1 4660 . . . . . . . . . . 11  |-  (/)  e.  om
4947, 48eqeltrdi 2298 . . . . . . . . . 10  |-  ( N  e.  om  ->  if ( N  e.  N ,  1o ,  (/) )  e. 
om )
5040, 42, 43, 49fvmptd3 5696 . . . . . . . . 9  |-  ( N  e.  om  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 N )  =  if ( N  e.  N ,  1o ,  (/) ) )
5150, 47eqtrd 2240 . . . . . . . 8  |-  ( N  e.  om  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `
 N )  =  (/) )
5251ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( ( i  e. 
om  |->  if ( i  e.  N ,  1o ,  (/) ) ) `  N )  =  (/) )
53 simplr 528 . . . . . . 7  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  -> 
( X `  N
)  =  1o )
5439, 52, 533eqtr3rd 2249 . . . . . 6  |-  ( ( ( ( N  e. 
om  /\  X  e. )  /\  ( X `  N )  =  1o )  /\  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )  ->  1o  =  (/) )
5554ex 115 . . . . 5  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  ->  1o  =  (/) ) )
5637, 55mtoi 666 . . . 4  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
5756olcd 736 . . 3  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  ->  (
( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
58 df-dc 837 . . 3  |-  (DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  <->  ( (
i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X  \/  -.  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X ) )
5957, 58sylibr 134 . 2  |-  ( ( ( N  e.  om  /\  X  e. )  /\  ( X `
 N )  =  1o )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
60 simpl 109 . . . . 5  |-  ( ( N  e.  om  /\  X  e. )  ->  N  e.  om )
6121, 60ffvelcdmd 5739 . . . 4  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  N )  e.  2o )
6261, 25eleqtrdi 2300 . . 3  |-  ( ( N  e.  om  /\  X  e. )  ->  ( X `  N )  e.  { (/)
,  1o } )
63 elpri 3666 . . 3  |-  ( ( X `  N )  e.  { (/) ,  1o }  ->  ( ( X `
 N )  =  (/)  \/  ( X `  N )  =  1o ) )
6462, 63syl 14 . 2  |-  ( ( N  e.  om  /\  X  e. )  ->  ( ( X `  N )  =  (/)  \/  ( X `
 N )  =  1o ) )
6535, 59, 64mpjaodan 800 1  |-  ( ( N  e.  om  /\  X  e. )  -> DECID  ( i  e.  om  |->  if ( i  e.  N ,  1o ,  (/) ) )  =  X )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178    =/= wne 2378   (/)c0 3468   ifcif 3579   {cpr 3644   U.cuni 3864    |-> cmpt 4121   Ord word 4427   omcom 4656   -->wf 5286   ` cfv 5290   1oc1o 6518   2oc2o 6519  ℕxnninf 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-nninf 7248
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator