Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version |
Description: Finite elements of ℕ∞ are isolated. That is, given a natural number and any element of ℕ∞, it is decidable whether the natural number (when converted to an element of ℕ∞) is equal to the given element of ℕ∞. Stated in an online post by Martin Escardo. One way to understand this theorem is that you do not need to look at an unbounded number of elements of the sequence to decide whether it is equal to (in fact, you only need to look at two elements and tells you where to look). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
Ref | Expression |
---|---|
nninfisol | ℕ∞ DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpllr 524 | . . . 4 ℕ∞ ℕ∞ | |
2 | simplr 520 | . . . 4 ℕ∞ | |
3 | simplll 523 | . . . 4 ℕ∞ | |
4 | simpr 109 | . . . 4 ℕ∞ | |
5 | 1, 2, 3, 4 | nninfisollem0 7094 | . . 3 ℕ∞ DECID |
6 | simp-4r 532 | . . . . 5 ℕ∞ ℕ∞ | |
7 | simpllr 524 | . . . . 5 ℕ∞ | |
8 | simp-4l 531 | . . . . 5 ℕ∞ | |
9 | simpr 109 | . . . . . . 7 ℕ∞ | |
10 | 9 | neqned 2343 | . . . . . 6 ℕ∞ |
11 | 10 | adantr 274 | . . . . 5 ℕ∞ |
12 | simpr 109 | . . . . 5 ℕ∞ | |
13 | 6, 7, 8, 11, 12 | nninfisollemne 7095 | . . . 4 ℕ∞ DECID |
14 | simp-4r 532 | . . . . 5 ℕ∞ ℕ∞ | |
15 | simpllr 524 | . . . . 5 ℕ∞ | |
16 | simp-4l 531 | . . . . 5 ℕ∞ | |
17 | 10 | adantr 274 | . . . . 5 ℕ∞ |
18 | simpr 109 | . . . . 5 ℕ∞ | |
19 | 14, 15, 16, 17, 18 | nninfisollemeq 7096 | . . . 4 ℕ∞ DECID |
20 | nninff 7087 | . . . . . . . . 9 ℕ∞ | |
21 | 20 | adantl 275 | . . . . . . . 8 ℕ∞ |
22 | nnpredcl 4600 | . . . . . . . . 9 | |
23 | 22 | adantr 274 | . . . . . . . 8 ℕ∞ |
24 | 21, 23 | ffvelrnd 5621 | . . . . . . 7 ℕ∞ |
25 | df2o3 6398 | . . . . . . 7 | |
26 | 24, 25 | eleqtrdi 2259 | . . . . . 6 ℕ∞ |
27 | elpri 3599 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 ℕ∞ |
29 | 28 | ad2antrr 480 | . . . 4 ℕ∞ |
30 | 13, 19, 29 | mpjaodan 788 | . . 3 ℕ∞ DECID |
31 | nndceq0 4595 | . . . . 5 DECID | |
32 | exmiddc 826 | . . . . 5 DECID | |
33 | 31, 32 | syl 14 | . . . 4 |
34 | 33 | ad2antrr 480 | . . 3 ℕ∞ |
35 | 5, 30, 34 | mpjaodan 788 | . 2 ℕ∞ DECID |
36 | 1n0 6400 | . . . . . 6 | |
37 | 36 | neii 2338 | . . . . 5 |
38 | simpr 109 | . . . . . . . 8 ℕ∞ | |
39 | 38 | fveq1d 5488 | . . . . . . 7 ℕ∞ |
40 | eqid 2165 | . . . . . . . . . 10 | |
41 | eleq1 2229 | . . . . . . . . . . 11 | |
42 | 41 | ifbid 3541 | . . . . . . . . . 10 |
43 | id 19 | . . . . . . . . . 10 | |
44 | nnord 4589 | . . . . . . . . . . . . 13 | |
45 | ordirr 4519 | . . . . . . . . . . . . 13 | |
46 | 44, 45 | syl 14 | . . . . . . . . . . . 12 |
47 | 46 | iffalsed 3530 | . . . . . . . . . . 11 |
48 | peano1 4571 | . . . . . . . . . . 11 | |
49 | 47, 48 | eqeltrdi 2257 | . . . . . . . . . 10 |
50 | 40, 42, 43, 49 | fvmptd3 5579 | . . . . . . . . 9 |
51 | 50, 47 | eqtrd 2198 | . . . . . . . 8 |
52 | 51 | ad3antrrr 484 | . . . . . . 7 ℕ∞ |
53 | simplr 520 | . . . . . . 7 ℕ∞ | |
54 | 39, 52, 53 | 3eqtr3rd 2207 | . . . . . 6 ℕ∞ |
55 | 54 | ex 114 | . . . . 5 ℕ∞ |
56 | 37, 55 | mtoi 654 | . . . 4 ℕ∞ |
57 | 56 | olcd 724 | . . 3 ℕ∞ |
58 | df-dc 825 | . . 3 DECID | |
59 | 57, 58 | sylibr 133 | . 2 ℕ∞ DECID |
60 | simpl 108 | . . . . 5 ℕ∞ | |
61 | 21, 60 | ffvelrnd 5621 | . . . 4 ℕ∞ |
62 | 61, 25 | eleqtrdi 2259 | . . 3 ℕ∞ |
63 | elpri 3599 | . . 3 | |
64 | 62, 63 | syl 14 | . 2 ℕ∞ |
65 | 35, 59, 64 | mpjaodan 788 | 1 ℕ∞ DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 c0 3409 cif 3520 cpr 3577 cuni 3789 cmpt 4043 word 4340 com 4567 wf 5184 cfv 5188 c1o 6377 c2o 6378 ℕ∞xnninf 7084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1o 6384 df-2o 6385 df-map 6616 df-nninf 7085 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |