| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version | ||
| Description: Finite elements of
ℕ∞ are isolated. That is, given a natural
number and any element of ℕ∞, it is decidable
whether the
natural number (when converted to an element of
ℕ∞) is equal to
the given element of ℕ∞. Stated in an online
post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7284). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfisol |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | simplll 533 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | nninfisollem0 7234 |
. . 3
|
| 6 | simp-4r 542 |
. . . . 5
| |
| 7 | simpllr 534 |
. . . . 5
| |
| 8 | simp-4l 541 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | 9 | neqned 2383 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | simpr 110 |
. . . . 5
| |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7235 |
. . . 4
|
| 14 | simp-4r 542 |
. . . . 5
| |
| 15 | simpllr 534 |
. . . . 5
| |
| 16 | simp-4l 541 |
. . . . 5
| |
| 17 | 10 | adantr 276 |
. . . . 5
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7236 |
. . . 4
|
| 20 | nninff 7226 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | nnpredcl 4672 |
. . . . . . . . 9
| |
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 21, 23 | ffvelcdmd 5718 |
. . . . . . 7
|
| 25 | df2o3 6518 |
. . . . . . 7
| |
| 26 | 24, 25 | eleqtrdi 2298 |
. . . . . 6
|
| 27 | elpri 3656 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | ad2antrr 488 |
. . . 4
|
| 30 | 13, 19, 29 | mpjaodan 800 |
. . 3
|
| 31 | nndceq0 4667 |
. . . . 5
| |
| 32 | exmiddc 838 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | 33 | ad2antrr 488 |
. . 3
|
| 35 | 5, 30, 34 | mpjaodan 800 |
. 2
|
| 36 | 1n0 6520 |
. . . . . 6
| |
| 37 | 36 | neii 2378 |
. . . . 5
|
| 38 | simpr 110 |
. . . . . . . 8
| |
| 39 | 38 | fveq1d 5580 |
. . . . . . 7
|
| 40 | eqid 2205 |
. . . . . . . . . 10
| |
| 41 | eleq1 2268 |
. . . . . . . . . . 11
| |
| 42 | 41 | ifbid 3592 |
. . . . . . . . . 10
|
| 43 | id 19 |
. . . . . . . . . 10
| |
| 44 | nnord 4661 |
. . . . . . . . . . . . 13
| |
| 45 | ordirr 4591 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
|
| 47 | 46 | iffalsed 3581 |
. . . . . . . . . . 11
|
| 48 | peano1 4643 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | eqeltrdi 2296 |
. . . . . . . . . 10
|
| 50 | 40, 42, 43, 49 | fvmptd3 5675 |
. . . . . . . . 9
|
| 51 | 50, 47 | eqtrd 2238 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | simplr 528 |
. . . . . . 7
| |
| 54 | 39, 52, 53 | 3eqtr3rd 2247 |
. . . . . 6
|
| 55 | 54 | ex 115 |
. . . . 5
|
| 56 | 37, 55 | mtoi 666 |
. . . 4
|
| 57 | 56 | olcd 736 |
. . 3
|
| 58 | df-dc 837 |
. . 3
| |
| 59 | 57, 58 | sylibr 134 |
. 2
|
| 60 | simpl 109 |
. . . . 5
| |
| 61 | 21, 60 | ffvelcdmd 5718 |
. . . 4
|
| 62 | 61, 25 | eleqtrdi 2298 |
. . 3
|
| 63 | elpri 3656 |
. . 3
| |
| 64 | 62, 63 | syl 14 |
. 2
|
| 65 | 35, 59, 64 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1o 6504 df-2o 6505 df-map 6739 df-nninf 7224 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |