| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version | ||
| Description: Finite elements of
ℕ∞ are isolated. That is, given a natural
number and any element of ℕ∞, it is decidable
whether the
natural number (when converted to an element of
ℕ∞) is equal to
the given element of ℕ∞. Stated in an online
post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7308). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfisol |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | simplll 533 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | nninfisollem0 7258 |
. . 3
|
| 6 | simp-4r 542 |
. . . . 5
| |
| 7 | simpllr 534 |
. . . . 5
| |
| 8 | simp-4l 541 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | 9 | neqned 2385 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | simpr 110 |
. . . . 5
| |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7259 |
. . . 4
|
| 14 | simp-4r 542 |
. . . . 5
| |
| 15 | simpllr 534 |
. . . . 5
| |
| 16 | simp-4l 541 |
. . . . 5
| |
| 17 | 10 | adantr 276 |
. . . . 5
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7260 |
. . . 4
|
| 20 | nninff 7250 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | nnpredcl 4689 |
. . . . . . . . 9
| |
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 21, 23 | ffvelcdmd 5739 |
. . . . . . 7
|
| 25 | df2o3 6539 |
. . . . . . 7
| |
| 26 | 24, 25 | eleqtrdi 2300 |
. . . . . 6
|
| 27 | elpri 3666 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | ad2antrr 488 |
. . . 4
|
| 30 | 13, 19, 29 | mpjaodan 800 |
. . 3
|
| 31 | nndceq0 4684 |
. . . . 5
| |
| 32 | exmiddc 838 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | 33 | ad2antrr 488 |
. . 3
|
| 35 | 5, 30, 34 | mpjaodan 800 |
. 2
|
| 36 | 1n0 6541 |
. . . . . 6
| |
| 37 | 36 | neii 2380 |
. . . . 5
|
| 38 | simpr 110 |
. . . . . . . 8
| |
| 39 | 38 | fveq1d 5601 |
. . . . . . 7
|
| 40 | eqid 2207 |
. . . . . . . . . 10
| |
| 41 | eleq1 2270 |
. . . . . . . . . . 11
| |
| 42 | 41 | ifbid 3601 |
. . . . . . . . . 10
|
| 43 | id 19 |
. . . . . . . . . 10
| |
| 44 | nnord 4678 |
. . . . . . . . . . . . 13
| |
| 45 | ordirr 4608 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
|
| 47 | 46 | iffalsed 3589 |
. . . . . . . . . . 11
|
| 48 | peano1 4660 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | eqeltrdi 2298 |
. . . . . . . . . 10
|
| 50 | 40, 42, 43, 49 | fvmptd3 5696 |
. . . . . . . . 9
|
| 51 | 50, 47 | eqtrd 2240 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | simplr 528 |
. . . . . . 7
| |
| 54 | 39, 52, 53 | 3eqtr3rd 2249 |
. . . . . 6
|
| 55 | 54 | ex 115 |
. . . . 5
|
| 56 | 37, 55 | mtoi 666 |
. . . 4
|
| 57 | 56 | olcd 736 |
. . 3
|
| 58 | df-dc 837 |
. . 3
| |
| 59 | 57, 58 | sylibr 134 |
. 2
|
| 60 | simpl 109 |
. . . . 5
| |
| 61 | 21, 60 | ffvelcdmd 5739 |
. . . 4
|
| 62 | 61, 25 | eleqtrdi 2300 |
. . 3
|
| 63 | elpri 3666 |
. . 3
| |
| 64 | 62, 63 | syl 14 |
. 2
|
| 65 | 35, 59, 64 | mpjaodan 800 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1o 6525 df-2o 6526 df-map 6760 df-nninf 7248 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |