| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version | ||
| Description: Finite elements of
ℕ∞ are isolated. That is, given a natural
number and any element of ℕ∞, it is decidable
whether the
natural number (when converted to an element of
ℕ∞) is equal to
the given element of ℕ∞. Stated in an online
post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence By contrast, the point at infinity being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO) (nninfinfwlpo 7347). (Contributed by BJ and Jim Kingdon, 12-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfisol |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | simplll 533 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | nninfisollem0 7297 |
. . 3
|
| 6 | simp-4r 542 |
. . . . 5
| |
| 7 | simpllr 534 |
. . . . 5
| |
| 8 | simp-4l 541 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | 9 | neqned 2407 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | simpr 110 |
. . . . 5
| |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7298 |
. . . 4
|
| 14 | simp-4r 542 |
. . . . 5
| |
| 15 | simpllr 534 |
. . . . 5
| |
| 16 | simp-4l 541 |
. . . . 5
| |
| 17 | 10 | adantr 276 |
. . . . 5
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7299 |
. . . 4
|
| 20 | nninff 7289 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | nnpredcl 4715 |
. . . . . . . . 9
| |
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 21, 23 | ffvelcdmd 5771 |
. . . . . . 7
|
| 25 | df2o3 6576 |
. . . . . . 7
| |
| 26 | 24, 25 | eleqtrdi 2322 |
. . . . . 6
|
| 27 | elpri 3689 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | ad2antrr 488 |
. . . 4
|
| 30 | 13, 19, 29 | mpjaodan 803 |
. . 3
|
| 31 | nndceq0 4710 |
. . . . 5
| |
| 32 | exmiddc 841 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | 33 | ad2antrr 488 |
. . 3
|
| 35 | 5, 30, 34 | mpjaodan 803 |
. 2
|
| 36 | 1n0 6578 |
. . . . . 6
| |
| 37 | 36 | neii 2402 |
. . . . 5
|
| 38 | simpr 110 |
. . . . . . . 8
| |
| 39 | 38 | fveq1d 5629 |
. . . . . . 7
|
| 40 | eqid 2229 |
. . . . . . . . . 10
| |
| 41 | eleq1 2292 |
. . . . . . . . . . 11
| |
| 42 | 41 | ifbid 3624 |
. . . . . . . . . 10
|
| 43 | id 19 |
. . . . . . . . . 10
| |
| 44 | nnord 4704 |
. . . . . . . . . . . . 13
| |
| 45 | ordirr 4634 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
|
| 47 | 46 | iffalsed 3612 |
. . . . . . . . . . 11
|
| 48 | peano1 4686 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | eqeltrdi 2320 |
. . . . . . . . . 10
|
| 50 | 40, 42, 43, 49 | fvmptd3 5728 |
. . . . . . . . 9
|
| 51 | 50, 47 | eqtrd 2262 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | simplr 528 |
. . . . . . 7
| |
| 54 | 39, 52, 53 | 3eqtr3rd 2271 |
. . . . . 6
|
| 55 | 54 | ex 115 |
. . . . 5
|
| 56 | 37, 55 | mtoi 668 |
. . . 4
|
| 57 | 56 | olcd 739 |
. . 3
|
| 58 | df-dc 840 |
. . 3
| |
| 59 | 57, 58 | sylibr 134 |
. 2
|
| 60 | simpl 109 |
. . . . 5
| |
| 61 | 21, 60 | ffvelcdmd 5771 |
. . . 4
|
| 62 | 61, 25 | eleqtrdi 2322 |
. . 3
|
| 63 | elpri 3689 |
. . 3
| |
| 64 | 62, 63 | syl 14 |
. 2
|
| 65 | 35, 59, 64 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1o 6562 df-2o 6563 df-map 6797 df-nninf 7287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |