| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version | ||
| Description: Finite elements of
ℕ∞ are isolated. That is, given a natural
number and any element of ℕ∞, it is decidable
whether the
natural number (when converted to an element of
ℕ∞) is equal to
the given element of ℕ∞. Stated in an online
post by Martin
Escardo. One way to understand this theorem is that you do not need to
look at an unbounded number of elements of the sequence |
| Ref | Expression |
|---|---|
| nninfisol |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpllr 534 |
. . . 4
| |
| 2 | simplr 528 |
. . . 4
| |
| 3 | simplll 533 |
. . . 4
| |
| 4 | simpr 110 |
. . . 4
| |
| 5 | 1, 2, 3, 4 | nninfisollem0 7205 |
. . 3
|
| 6 | simp-4r 542 |
. . . . 5
| |
| 7 | simpllr 534 |
. . . . 5
| |
| 8 | simp-4l 541 |
. . . . 5
| |
| 9 | simpr 110 |
. . . . . . 7
| |
| 10 | 9 | neqned 2374 |
. . . . . 6
|
| 11 | 10 | adantr 276 |
. . . . 5
|
| 12 | simpr 110 |
. . . . 5
| |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7206 |
. . . 4
|
| 14 | simp-4r 542 |
. . . . 5
| |
| 15 | simpllr 534 |
. . . . 5
| |
| 16 | simp-4l 541 |
. . . . 5
| |
| 17 | 10 | adantr 276 |
. . . . 5
|
| 18 | simpr 110 |
. . . . 5
| |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7207 |
. . . 4
|
| 20 | nninff 7197 |
. . . . . . . . 9
| |
| 21 | 20 | adantl 277 |
. . . . . . . 8
|
| 22 | nnpredcl 4660 |
. . . . . . . . 9
| |
| 23 | 22 | adantr 276 |
. . . . . . . 8
|
| 24 | 21, 23 | ffvelcdmd 5701 |
. . . . . . 7
|
| 25 | df2o3 6497 |
. . . . . . 7
| |
| 26 | 24, 25 | eleqtrdi 2289 |
. . . . . 6
|
| 27 | elpri 3646 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | 28 | ad2antrr 488 |
. . . 4
|
| 30 | 13, 19, 29 | mpjaodan 799 |
. . 3
|
| 31 | nndceq0 4655 |
. . . . 5
| |
| 32 | exmiddc 837 |
. . . . 5
| |
| 33 | 31, 32 | syl 14 |
. . . 4
|
| 34 | 33 | ad2antrr 488 |
. . 3
|
| 35 | 5, 30, 34 | mpjaodan 799 |
. 2
|
| 36 | 1n0 6499 |
. . . . . 6
| |
| 37 | 36 | neii 2369 |
. . . . 5
|
| 38 | simpr 110 |
. . . . . . . 8
| |
| 39 | 38 | fveq1d 5563 |
. . . . . . 7
|
| 40 | eqid 2196 |
. . . . . . . . . 10
| |
| 41 | eleq1 2259 |
. . . . . . . . . . 11
| |
| 42 | 41 | ifbid 3583 |
. . . . . . . . . 10
|
| 43 | id 19 |
. . . . . . . . . 10
| |
| 44 | nnord 4649 |
. . . . . . . . . . . . 13
| |
| 45 | ordirr 4579 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | syl 14 |
. . . . . . . . . . . 12
|
| 47 | 46 | iffalsed 3572 |
. . . . . . . . . . 11
|
| 48 | peano1 4631 |
. . . . . . . . . . 11
| |
| 49 | 47, 48 | eqeltrdi 2287 |
. . . . . . . . . 10
|
| 50 | 40, 42, 43, 49 | fvmptd3 5658 |
. . . . . . . . 9
|
| 51 | 50, 47 | eqtrd 2229 |
. . . . . . . 8
|
| 52 | 51 | ad3antrrr 492 |
. . . . . . 7
|
| 53 | simplr 528 |
. . . . . . 7
| |
| 54 | 39, 52, 53 | 3eqtr3rd 2238 |
. . . . . 6
|
| 55 | 54 | ex 115 |
. . . . 5
|
| 56 | 37, 55 | mtoi 665 |
. . . 4
|
| 57 | 56 | olcd 735 |
. . 3
|
| 58 | df-dc 836 |
. . 3
| |
| 59 | 57, 58 | sylibr 134 |
. 2
|
| 60 | simpl 109 |
. . . . 5
| |
| 61 | 21, 60 | ffvelcdmd 5701 |
. . . 4
|
| 62 | 61, 25 | eleqtrdi 2289 |
. . 3
|
| 63 | elpri 3646 |
. . 3
| |
| 64 | 62, 63 | syl 14 |
. 2
|
| 65 | 35, 59, 64 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1o 6483 df-2o 6484 df-map 6718 df-nninf 7195 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |