| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nninfisol | Unicode version | ||
| Description: Finite elements of
ℕ∞ are isolated.  That is, given a natural
       number and any element of ℕ∞, it is decidable
whether the
       natural number (when converted to an element of
ℕ∞) is equal to
       the given element of ℕ∞.  Stated in an online
post by Martin
       Escardo.  One way to understand this theorem is that you do not need to
       look at an unbounded number of elements of the sequence  | 
| Ref | Expression | 
|---|---|
| nninfisol | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpllr 534 | 
. . . 4
 | |
| 2 | simplr 528 | 
. . . 4
 | |
| 3 | simplll 533 | 
. . . 4
 | |
| 4 | simpr 110 | 
. . . 4
 | |
| 5 | 1, 2, 3, 4 | nninfisollem0 7196 | 
. . 3
 | 
| 6 | simp-4r 542 | 
. . . . 5
 | |
| 7 | simpllr 534 | 
. . . . 5
 | |
| 8 | simp-4l 541 | 
. . . . 5
 | |
| 9 | simpr 110 | 
. . . . . . 7
 | |
| 10 | 9 | neqned 2374 | 
. . . . . 6
 | 
| 11 | 10 | adantr 276 | 
. . . . 5
 | 
| 12 | simpr 110 | 
. . . . 5
 | |
| 13 | 6, 7, 8, 11, 12 | nninfisollemne 7197 | 
. . . 4
 | 
| 14 | simp-4r 542 | 
. . . . 5
 | |
| 15 | simpllr 534 | 
. . . . 5
 | |
| 16 | simp-4l 541 | 
. . . . 5
 | |
| 17 | 10 | adantr 276 | 
. . . . 5
 | 
| 18 | simpr 110 | 
. . . . 5
 | |
| 19 | 14, 15, 16, 17, 18 | nninfisollemeq 7198 | 
. . . 4
 | 
| 20 | nninff 7188 | 
. . . . . . . . 9
 | |
| 21 | 20 | adantl 277 | 
. . . . . . . 8
 | 
| 22 | nnpredcl 4659 | 
. . . . . . . . 9
 | |
| 23 | 22 | adantr 276 | 
. . . . . . . 8
 | 
| 24 | 21, 23 | ffvelcdmd 5698 | 
. . . . . . 7
 | 
| 25 | df2o3 6488 | 
. . . . . . 7
 | |
| 26 | 24, 25 | eleqtrdi 2289 | 
. . . . . 6
 | 
| 27 | elpri 3645 | 
. . . . . 6
 | |
| 28 | 26, 27 | syl 14 | 
. . . . 5
 | 
| 29 | 28 | ad2antrr 488 | 
. . . 4
 | 
| 30 | 13, 19, 29 | mpjaodan 799 | 
. . 3
 | 
| 31 | nndceq0 4654 | 
. . . . 5
 | |
| 32 | exmiddc 837 | 
. . . . 5
 | |
| 33 | 31, 32 | syl 14 | 
. . . 4
 | 
| 34 | 33 | ad2antrr 488 | 
. . 3
 | 
| 35 | 5, 30, 34 | mpjaodan 799 | 
. 2
 | 
| 36 | 1n0 6490 | 
. . . . . 6
 | |
| 37 | 36 | neii 2369 | 
. . . . 5
 | 
| 38 | simpr 110 | 
. . . . . . . 8
 | |
| 39 | 38 | fveq1d 5560 | 
. . . . . . 7
 | 
| 40 | eqid 2196 | 
. . . . . . . . . 10
 | |
| 41 | eleq1 2259 | 
. . . . . . . . . . 11
 | |
| 42 | 41 | ifbid 3582 | 
. . . . . . . . . 10
 | 
| 43 | id 19 | 
. . . . . . . . . 10
 | |
| 44 | nnord 4648 | 
. . . . . . . . . . . . 13
 | |
| 45 | ordirr 4578 | 
. . . . . . . . . . . . 13
 | |
| 46 | 44, 45 | syl 14 | 
. . . . . . . . . . . 12
 | 
| 47 | 46 | iffalsed 3571 | 
. . . . . . . . . . 11
 | 
| 48 | peano1 4630 | 
. . . . . . . . . . 11
 | |
| 49 | 47, 48 | eqeltrdi 2287 | 
. . . . . . . . . 10
 | 
| 50 | 40, 42, 43, 49 | fvmptd3 5655 | 
. . . . . . . . 9
 | 
| 51 | 50, 47 | eqtrd 2229 | 
. . . . . . . 8
 | 
| 52 | 51 | ad3antrrr 492 | 
. . . . . . 7
 | 
| 53 | simplr 528 | 
. . . . . . 7
 | |
| 54 | 39, 52, 53 | 3eqtr3rd 2238 | 
. . . . . 6
 | 
| 55 | 54 | ex 115 | 
. . . . 5
 | 
| 56 | 37, 55 | mtoi 665 | 
. . . 4
 | 
| 57 | 56 | olcd 735 | 
. . 3
 | 
| 58 | df-dc 836 | 
. . 3
 | |
| 59 | 57, 58 | sylibr 134 | 
. 2
 | 
| 60 | simpl 109 | 
. . . . 5
 | |
| 61 | 21, 60 | ffvelcdmd 5698 | 
. . . 4
 | 
| 62 | 61, 25 | eleqtrdi 2289 | 
. . 3
 | 
| 63 | elpri 3645 | 
. . 3
 | |
| 64 | 62, 63 | syl 14 | 
. 2
 | 
| 65 | 35, 59, 64 | mpjaodan 799 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1o 6474 df-2o 6475 df-map 6709 df-nninf 7186 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |