ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncnp Unicode version

Theorem cncnp 12771
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncnp
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 12738 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
21simprbda 381 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  F : X --> Y )
3 eqid 2164 . . . . . . 7  |-  U. J  =  U. J
43cncnpi 12769 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  U. J )  ->  F  e.  ( ( J  CnP  K
) `  x )
)
54ralrimiva 2537 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
65adantl 275 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
7 toponuni 12554 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
87ad2antrr 480 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  X  =  U. J )
98raleqdv 2665 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  <->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) ) )
106, 9mpbird 166 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
112, 10jca 304 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
12 simprl 521 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F : X --> Y )
13 cnvimass 4961 . . . . . . . . . 10  |-  ( `' F " y ) 
C_  dom  F
14 fdm 5337 . . . . . . . . . . 11  |-  ( F : X --> Y  ->  dom  F  =  X )
1514adantl 275 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  dom  F  =  X )
1613, 15sseqtrid 3187 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( `' F " y )  C_  X
)
17 ssralv 3201 . . . . . . . . 9  |-  ( ( `' F " y ) 
C_  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x ) ) )
1816, 17syl 14 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) F  e.  ( ( J  CnP  K ) `
 x ) ) )
19 simp-4l 531 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  J  e.  (TopOn `  X )
)
20 simp-4r 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  K  e.  (TopOn `  Y )
)
21 topontop 12553 . . . . . . . . . . . . . 14  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
2220, 21syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  K  e.  Top )
23 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  e.  ( ( J  CnP  K ) `  x ) )
24 cnprcl2k 12747 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  x ) )  ->  x  e.  X )
2519, 22, 23, 24syl3anc 1227 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  x  e.  X )
26 simpllr 524 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  y  e.  K )
27 ffn 5331 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  F  Fn  X )
2827ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  Fn  X )
29 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  x  e.  ( `' F "
y ) )
30 elpreima 5598 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  (
x  e.  ( `' F " y )  <-> 
( x  e.  X  /\  ( F `  x
)  e.  y ) ) )
3130simplbda 382 . . . . . . . . . . . . 13  |-  ( ( F  Fn  X  /\  x  e.  ( `' F " y ) )  ->  ( F `  x )  e.  y )
3228, 29, 31syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( F `  x )  e.  y )
33 icnpimaex 12752 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  /\  ( F  e.  ( ( J  CnP  K ) `  x )  /\  y  e.  K  /\  ( F `  x
)  e.  y ) )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u )  C_  y ) )
3419, 20, 25, 23, 26, 32, 33syl33anc 1242 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u )  C_  y ) )
35 simpllr 524 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  F : X --> Y )
3635ffund 5335 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  Fun  F )
37 toponss 12565 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  u  e.  J )  ->  u  C_  X )
3819, 37sylan 281 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_  X )
3935fdmd 5338 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  dom  F  =  X )
4038, 39sseqtrrd 3176 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_ 
dom  F )
41 funimass3 5595 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  u  C_ 
dom  F )  -> 
( ( F "
u )  C_  y  <->  u 
C_  ( `' F " y ) ) )
4236, 40, 41syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( F " u
)  C_  y  <->  u  C_  ( `' F " y ) ) )
4342anbi2d 460 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( x  e.  u  /\  ( F " u
)  C_  y )  <->  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4443rexbidva 2461 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( E. u  e.  J  ( x  e.  u  /\  ( F " u
)  C_  y )  <->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4534, 44mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
4645expr 373 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  x  e.  ( `' F "
y ) )  -> 
( F  e.  ( ( J  CnP  K
) `  x )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4746ralimdva 2531 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4818, 47syld 45 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4948impr 377 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
5049an32s 558 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
51 topontop 12553 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
5251ad3antrrr 484 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  J  e.  Top )
53 eltop2 12611 . . . . . 6  |-  ( J  e.  Top  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5452, 53syl 14 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5550, 54mpbird 166 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
5655ralrimiva 2537 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  A. y  e.  K  ( `' F " y )  e.  J )
571adantr 274 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
5812, 56, 57mpbir2and 933 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F  e.  ( J  Cn  K
) )
5911, 58impbida 586 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   A.wral 2442   E.wrex 2443    C_ wss 3111   U.cuni 3783   `'ccnv 4597   dom cdm 4598   "cima 4601   Fun wfun 5176    Fn wfn 5177   -->wf 5178   ` cfv 5182  (class class class)co 5836   Topctop 12536  TopOnctopon 12549    Cn ccn 12726    CnP ccnp 12727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-map 6607  df-topgen 12513  df-top 12537  df-topon 12550  df-cn 12729  df-cnp 12730
This theorem is referenced by:  cncnp2m  12772  cnnei  12773  cnconst2  12774  metcn  13055  txmetcn  13060  cnlimcim  13181  cnlimc  13182  dvcn  13205
  Copyright terms: Public domain W3C validator