ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  metcnpi Unicode version

Theorem metcnpi 13309
Description: Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 13306. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
metcn.2  |-  J  =  ( MetOpen `  C )
metcn.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
metcnpi  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
A ) )
Distinct variable groups:    x, y, F   
x, J, y    x, K, y    x, X, y   
x, Y, y    x, A, y    x, C, y   
x, D, y    x, P, y

Proof of Theorem metcnpi
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  F  e.  ( ( J  CnP  K ) `  P ) )
2 simpll 524 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  C  e.  ( *Met `  X
) )
3 simplr 525 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  D  e.  ( *Met `  Y
) )
4 metcn.2 . . . . . . . . . 10  |-  J  =  ( MetOpen `  C )
54mopntopon 13237 . . . . . . . . 9  |-  ( C  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
65ad2antrr 485 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  X ) )
74mopnuni 13239 . . . . . . . . . 10  |-  ( C  e.  ( *Met `  X )  ->  X  =  U. J )
87ad2antrr 485 . . . . . . . . 9  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  X  =  U. J )
98fveq2d 5500 . . . . . . . 8  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  (TopOn `  X
)  =  (TopOn `  U. J ) )
106, 9eleqtrd 2249 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  J  e.  (TopOn `  U. J ) )
11 metcn.4 . . . . . . . . 9  |-  K  =  ( MetOpen `  D )
1211mopntopon 13237 . . . . . . . 8  |-  ( D  e.  ( *Met `  Y )  ->  K  e.  (TopOn `  Y )
)
13 topontop 12806 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
143, 12, 133syl 17 . . . . . . 7  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  K  e.  Top )
15 cnprcl2k 13000 . . . . . . 7  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  Top  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  U. J )
1610, 14, 1, 15syl3anc 1233 . . . . . 6  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  U. J )
1716, 8eleqtrrd 2250 . . . . 5  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  P  e.  X )
184, 11metcnp 13306 . . . . 5  |-  ( ( C  e.  ( *Met `  X )  /\  D  e.  ( *Met `  Y
)  /\  P  e.  X )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
z ) ) ) )
192, 3, 17, 18syl3anc 1233 . . . 4  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  <  x  -> 
( ( F `  P ) D ( F `  y ) )  <  z ) ) ) )
201, 19mpbid 146 . . 3  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( F : X --> Y  /\  A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
z ) ) )
21 breq2 3993 . . . . . 6  |-  ( z  =  A  ->  (
( ( F `  P ) D ( F `  y ) )  <  z  <->  ( ( F `  P ) D ( F `  y ) )  < 
A ) )
2221imbi2d 229 . . . . 5  |-  ( z  =  A  ->  (
( ( P C y )  <  x  ->  ( ( F `  P ) D ( F `  y ) )  <  z )  <-> 
( ( P C y )  <  x  ->  ( ( F `  P ) D ( F `  y ) )  <  A ) ) )
2322rexralbidv 2496 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
z )  <->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
A ) ) )
2423rspccv 2831 . . 3  |-  ( A. z  e.  RR+  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
z )  ->  ( A  e.  RR+  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
A ) ) )
2520, 24simpl2im 384 . 2  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  F  e.  ( ( J  CnP  K ) `  P ) )  ->  ( A  e.  RR+  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
A ) ) )
2625impr 377 1  |-  ( ( ( C  e.  ( *Met `  X
)  /\  D  e.  ( *Met `  Y
) )  /\  ( F  e.  ( ( J  CnP  K ) `  P )  /\  A  e.  RR+ ) )  ->  E. x  e.  RR+  A. y  e.  X  ( ( P C y )  < 
x  ->  ( ( F `  P ) D ( F `  y ) )  < 
A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449   U.cuni 3796   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853    < clt 7954   RR+crp 9610   *Metcxmet 12774   MetOpencmopn 12779   Topctop 12789  TopOnctopon 12802    CnP ccnp 12980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-map 6628  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-cnp 12983
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator