ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen Unicode version

Theorem djuen 7273
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)

Proof of Theorem djuen
StepHypRef Expression
1 encv 6802 . . . . . . . 8  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
21adantr 276 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  e.  _V  /\  B  e.  _V )
)
32simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  e.  _V )
4 eninl 7158 . . . . . 6  |-  ( A  e.  _V  ->  (inl " A )  ~~  A
)
53, 4syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  A )
6 simpl 109 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  ~~  B )
7 entr 6840 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  B )  ->  (inl " A )  ~~  B
)
85, 6, 7syl2anc 411 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  B )
9 eninl 7158 . . . . . 6  |-  ( B  e.  _V  ->  (inl " B )  ~~  B
)
102, 9simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " B )  ~~  B )
1110ensymd 6839 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  B  ~~  (inl " B
) )
12 entr 6840 . . . 4  |-  ( ( (inl " A ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inl " A
)  ~~  (inl " B
) )
138, 11, 12syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  (inl " B ) )
14 encv 6802 . . . . . . . 8  |-  ( C 
~~  D  ->  ( C  e.  _V  /\  D  e.  _V ) )
1514adantl 277 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( C  e.  _V  /\  D  e.  _V )
)
1615simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  C  e.  _V )
17 eninr 7159 . . . . . 6  |-  ( C  e.  _V  ->  (inr " C )  ~~  C
)
1816, 17syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  C )
19 entr 6840 . . . . 5  |-  ( ( (inr " C ) 
~~  C  /\  C  ~~  D )  ->  (inr " C )  ~~  D
)
2018, 19sylancom 420 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  D )
21 eninr 7159 . . . . . 6  |-  ( D  e.  _V  ->  (inr " D )  ~~  D
)
2215, 21simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " D )  ~~  D )
2322ensymd 6839 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  D  ~~  (inr " D
) )
24 entr 6840 . . . 4  |-  ( ( (inr " C ) 
~~  D  /\  D  ~~  (inr " D ) )  ->  (inr " C
)  ~~  (inr " D
) )
2520, 23, 24syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  (inr " D ) )
26 djuin 7125 . . . 4  |-  ( (inl " A )  i^i  (inr " C ) )  =  (/)
2726a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  i^i  (inr " C
) )  =  (/) )
28 djuin 7125 . . . 4  |-  ( (inl " B )  i^i  (inr " D ) )  =  (/)
2928a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " B
)  i^i  (inr " D
) )  =  (/) )
30 unen 6872 . . 3  |-  ( ( ( (inl " A
)  ~~  (inl " B
)  /\  (inr " C
)  ~~  (inr " D
) )  /\  (
( (inl " A
)  i^i  (inr " C
) )  =  (/)  /\  ( (inl " B
)  i^i  (inr " D
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D ) ) )
3113, 25, 27, 29, 30syl22anc 1250 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D
) ) )
32 djuun 7128 . 2  |-  ( (inl " A )  u.  (inr " C ) )  =  ( A C )
33 djuun 7128 . 2  |-  ( (inl " B )  u.  (inr " D ) )  =  ( B D )
3431, 32, 333brtr3g 4063 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3152    i^i cin 3153   (/)c0 3447   class class class wbr 4030   "cima 4663    ~~ cen 6794   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-er 6589  df-en 6797  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  djuenun  7274  exmidunben  12586  enctlem  12592
  Copyright terms: Public domain W3C validator