Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuen | Unicode version |
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.) |
Ref | Expression |
---|---|
djuen | ⊔ ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 6724 | . . . . . . . 8 | |
2 | 1 | adantr 274 | . . . . . . 7 |
3 | 2 | simpld 111 | . . . . . 6 |
4 | eninl 7074 | . . . . . 6 inl | |
5 | 3, 4 | syl 14 | . . . . 5 inl |
6 | simpl 108 | . . . . 5 | |
7 | entr 6762 | . . . . 5 inl inl | |
8 | 5, 6, 7 | syl2anc 409 | . . . 4 inl |
9 | eninl 7074 | . . . . . 6 inl | |
10 | 2, 9 | simpl2im 384 | . . . . 5 inl |
11 | 10 | ensymd 6761 | . . . 4 inl |
12 | entr 6762 | . . . 4 inl inl inl inl | |
13 | 8, 11, 12 | syl2anc 409 | . . 3 inl inl |
14 | encv 6724 | . . . . . . . 8 | |
15 | 14 | adantl 275 | . . . . . . 7 |
16 | 15 | simpld 111 | . . . . . 6 |
17 | eninr 7075 | . . . . . 6 inr | |
18 | 16, 17 | syl 14 | . . . . 5 inr |
19 | entr 6762 | . . . . 5 inr inr | |
20 | 18, 19 | sylancom 418 | . . . 4 inr |
21 | eninr 7075 | . . . . . 6 inr | |
22 | 15, 21 | simpl2im 384 | . . . . 5 inr |
23 | 22 | ensymd 6761 | . . . 4 inr |
24 | entr 6762 | . . . 4 inr inr inr inr | |
25 | 20, 23, 24 | syl2anc 409 | . . 3 inr inr |
26 | djuin 7041 | . . . 4 inl inr | |
27 | 26 | a1i 9 | . . 3 inl inr |
28 | djuin 7041 | . . . 4 inl inr | |
29 | 28 | a1i 9 | . . 3 inl inr |
30 | unen 6794 | . . 3 inl inl inr inr inl inr inl inr inl inr inl inr | |
31 | 13, 25, 27, 29, 30 | syl22anc 1234 | . 2 inl inr inl inr |
32 | djuun 7044 | . 2 inl inr ⊔ | |
33 | djuun 7044 | . 2 inl inr ⊔ | |
34 | 31, 32, 33 | 3brtr3g 4022 | 1 ⊔ ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cun 3119 cin 3120 c0 3414 class class class wbr 3989 cima 4614 cen 6716 ⊔ cdju 7014 inlcinl 7022 inrcinr 7023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: djuenun 7189 exmidunben 12381 enctlem 12387 |
Copyright terms: Public domain | W3C validator |