ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen Unicode version

Theorem djuen 7212
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)

Proof of Theorem djuen
StepHypRef Expression
1 encv 6748 . . . . . . . 8  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
21adantr 276 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  e.  _V  /\  B  e.  _V )
)
32simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  e.  _V )
4 eninl 7098 . . . . . 6  |-  ( A  e.  _V  ->  (inl " A )  ~~  A
)
53, 4syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  A )
6 simpl 109 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  ~~  B )
7 entr 6786 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  B )  ->  (inl " A )  ~~  B
)
85, 6, 7syl2anc 411 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  B )
9 eninl 7098 . . . . . 6  |-  ( B  e.  _V  ->  (inl " B )  ~~  B
)
102, 9simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " B )  ~~  B )
1110ensymd 6785 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  B  ~~  (inl " B
) )
12 entr 6786 . . . 4  |-  ( ( (inl " A ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inl " A
)  ~~  (inl " B
) )
138, 11, 12syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  (inl " B ) )
14 encv 6748 . . . . . . . 8  |-  ( C 
~~  D  ->  ( C  e.  _V  /\  D  e.  _V ) )
1514adantl 277 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( C  e.  _V  /\  D  e.  _V )
)
1615simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  C  e.  _V )
17 eninr 7099 . . . . . 6  |-  ( C  e.  _V  ->  (inr " C )  ~~  C
)
1816, 17syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  C )
19 entr 6786 . . . . 5  |-  ( ( (inr " C ) 
~~  C  /\  C  ~~  D )  ->  (inr " C )  ~~  D
)
2018, 19sylancom 420 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  D )
21 eninr 7099 . . . . . 6  |-  ( D  e.  _V  ->  (inr " D )  ~~  D
)
2215, 21simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " D )  ~~  D )
2322ensymd 6785 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  D  ~~  (inr " D
) )
24 entr 6786 . . . 4  |-  ( ( (inr " C ) 
~~  D  /\  D  ~~  (inr " D ) )  ->  (inr " C
)  ~~  (inr " D
) )
2520, 23, 24syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  (inr " D ) )
26 djuin 7065 . . . 4  |-  ( (inl " A )  i^i  (inr " C ) )  =  (/)
2726a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  i^i  (inr " C
) )  =  (/) )
28 djuin 7065 . . . 4  |-  ( (inl " B )  i^i  (inr " D ) )  =  (/)
2928a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " B
)  i^i  (inr " D
) )  =  (/) )
30 unen 6818 . . 3  |-  ( ( ( (inl " A
)  ~~  (inl " B
)  /\  (inr " C
)  ~~  (inr " D
) )  /\  (
( (inl " A
)  i^i  (inr " C
) )  =  (/)  /\  ( (inl " B
)  i^i  (inr " D
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D ) ) )
3113, 25, 27, 29, 30syl22anc 1239 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D
) ) )
32 djuun 7068 . 2  |-  ( (inl " A )  u.  (inr " C ) )  =  ( A C )
33 djuun 7068 . 2  |-  ( (inl " B )  u.  (inr " D ) )  =  ( B D )
3431, 32, 333brtr3g 4038 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129    i^i cin 3130   (/)c0 3424   class class class wbr 4005   "cima 4631    ~~ cen 6740   ⊔ cdju 7038  inlcinl 7046  inrcinr 7047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-er 6537  df-en 6743  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by:  djuenun  7213  exmidunben  12429  enctlem  12435
  Copyright terms: Public domain W3C validator