ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen Unicode version

Theorem djuen 7271
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)

Proof of Theorem djuen
StepHypRef Expression
1 encv 6800 . . . . . . . 8  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
21adantr 276 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  e.  _V  /\  B  e.  _V )
)
32simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  e.  _V )
4 eninl 7156 . . . . . 6  |-  ( A  e.  _V  ->  (inl " A )  ~~  A
)
53, 4syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  A )
6 simpl 109 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  ~~  B )
7 entr 6838 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  B )  ->  (inl " A )  ~~  B
)
85, 6, 7syl2anc 411 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  B )
9 eninl 7156 . . . . . 6  |-  ( B  e.  _V  ->  (inl " B )  ~~  B
)
102, 9simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " B )  ~~  B )
1110ensymd 6837 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  B  ~~  (inl " B
) )
12 entr 6838 . . . 4  |-  ( ( (inl " A ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inl " A
)  ~~  (inl " B
) )
138, 11, 12syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  (inl " B ) )
14 encv 6800 . . . . . . . 8  |-  ( C 
~~  D  ->  ( C  e.  _V  /\  D  e.  _V ) )
1514adantl 277 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( C  e.  _V  /\  D  e.  _V )
)
1615simpld 112 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  C  e.  _V )
17 eninr 7157 . . . . . 6  |-  ( C  e.  _V  ->  (inr " C )  ~~  C
)
1816, 17syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  C )
19 entr 6838 . . . . 5  |-  ( ( (inr " C ) 
~~  C  /\  C  ~~  D )  ->  (inr " C )  ~~  D
)
2018, 19sylancom 420 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  D )
21 eninr 7157 . . . . . 6  |-  ( D  e.  _V  ->  (inr " D )  ~~  D
)
2215, 21simpl2im 386 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " D )  ~~  D )
2322ensymd 6837 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  D  ~~  (inr " D
) )
24 entr 6838 . . . 4  |-  ( ( (inr " C ) 
~~  D  /\  D  ~~  (inr " D ) )  ->  (inr " C
)  ~~  (inr " D
) )
2520, 23, 24syl2anc 411 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  (inr " D ) )
26 djuin 7123 . . . 4  |-  ( (inl " A )  i^i  (inr " C ) )  =  (/)
2726a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  i^i  (inr " C
) )  =  (/) )
28 djuin 7123 . . . 4  |-  ( (inl " B )  i^i  (inr " D ) )  =  (/)
2928a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " B
)  i^i  (inr " D
) )  =  (/) )
30 unen 6870 . . 3  |-  ( ( ( (inl " A
)  ~~  (inl " B
)  /\  (inr " C
)  ~~  (inr " D
) )  /\  (
( (inl " A
)  i^i  (inr " C
) )  =  (/)  /\  ( (inl " B
)  i^i  (inr " D
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D ) ) )
3113, 25, 27, 29, 30syl22anc 1250 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D
) ) )
32 djuun 7126 . 2  |-  ( (inl " A )  u.  (inr " C ) )  =  ( A C )
33 djuun 7126 . 2  |-  ( (inl " B )  u.  (inr " D ) )  =  ( B D )
3431, 32, 333brtr3g 4062 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    i^i cin 3152   (/)c0 3446   class class class wbr 4029   "cima 4662    ~~ cen 6792   ⊔ cdju 7096  inlcinl 7104  inrcinr 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by:  djuenun  7272  exmidunben  12583  enctlem  12589
  Copyright terms: Public domain W3C validator