ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuen Unicode version

Theorem djuen 7167
Description: Disjoint unions of equinumerous sets are equinumerous. (Contributed by Jim Kingdon, 30-Jul-2023.)
Assertion
Ref Expression
djuen  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)

Proof of Theorem djuen
StepHypRef Expression
1 encv 6712 . . . . . . . 8  |-  ( A 
~~  B  ->  ( A  e.  _V  /\  B  e.  _V ) )
21adantr 274 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A  e.  _V  /\  B  e.  _V )
)
32simpld 111 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  e.  _V )
4 eninl 7062 . . . . . 6  |-  ( A  e.  _V  ->  (inl " A )  ~~  A
)
53, 4syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  A )
6 simpl 108 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  A  ~~  B )
7 entr 6750 . . . . 5  |-  ( ( (inl " A ) 
~~  A  /\  A  ~~  B )  ->  (inl " A )  ~~  B
)
85, 6, 7syl2anc 409 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  B )
9 eninl 7062 . . . . . 6  |-  ( B  e.  _V  ->  (inl " B )  ~~  B
)
102, 9simpl2im 384 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " B )  ~~  B )
1110ensymd 6749 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  B  ~~  (inl " B
) )
12 entr 6750 . . . 4  |-  ( ( (inl " A ) 
~~  B  /\  B  ~~  (inl " B ) )  ->  (inl " A
)  ~~  (inl " B
) )
138, 11, 12syl2anc 409 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inl " A )  ~~  (inl " B ) )
14 encv 6712 . . . . . . . 8  |-  ( C 
~~  D  ->  ( C  e.  _V  /\  D  e.  _V ) )
1514adantl 275 . . . . . . 7  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( C  e.  _V  /\  D  e.  _V )
)
1615simpld 111 . . . . . 6  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  C  e.  _V )
17 eninr 7063 . . . . . 6  |-  ( C  e.  _V  ->  (inr " C )  ~~  C
)
1816, 17syl 14 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  C )
19 entr 6750 . . . . 5  |-  ( ( (inr " C ) 
~~  C  /\  C  ~~  D )  ->  (inr " C )  ~~  D
)
2018, 19sylancom 417 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  D )
21 eninr 7063 . . . . . 6  |-  ( D  e.  _V  ->  (inr " D )  ~~  D
)
2215, 21simpl2im 384 . . . . 5  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " D )  ~~  D )
2322ensymd 6749 . . . 4  |-  ( ( A  ~~  B  /\  C  ~~  D )  ->  D  ~~  (inr " D
) )
24 entr 6750 . . . 4  |-  ( ( (inr " C ) 
~~  D  /\  D  ~~  (inr " D ) )  ->  (inr " C
)  ~~  (inr " D
) )
2520, 23, 24syl2anc 409 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
(inr " C )  ~~  (inr " D ) )
26 djuin 7029 . . . 4  |-  ( (inl " A )  i^i  (inr " C ) )  =  (/)
2726a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  i^i  (inr " C
) )  =  (/) )
28 djuin 7029 . . . 4  |-  ( (inl " B )  i^i  (inr " D ) )  =  (/)
2928a1i 9 . . 3  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " B
)  i^i  (inr " D
) )  =  (/) )
30 unen 6782 . . 3  |-  ( ( ( (inl " A
)  ~~  (inl " B
)  /\  (inr " C
)  ~~  (inr " D
) )  /\  (
( (inl " A
)  i^i  (inr " C
) )  =  (/)  /\  ( (inl " B
)  i^i  (inr " D
) )  =  (/) ) )  ->  (
(inl " A )  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D ) ) )
3113, 25, 27, 29, 30syl22anc 1229 . 2  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( (inl " A
)  u.  (inr " C ) )  ~~  ( (inl " B )  u.  (inr " D
) ) )
32 djuun 7032 . 2  |-  ( (inl " A )  u.  (inr " C ) )  =  ( A C )
33 djuun 7032 . 2  |-  ( (inl " B )  u.  (inr " D ) )  =  ( B D )
3431, 32, 333brtr3g 4015 1  |-  ( ( A  ~~  B  /\  C  ~~  D )  -> 
( A C )  ~~  ( B D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114    i^i cin 3115   (/)c0 3409   class class class wbr 3982   "cima 4607    ~~ cen 6704   ⊔ cdju 7002  inlcinl 7010  inrcinr 7011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by:  djuenun  7168  exmidunben  12359  enctlem  12365
  Copyright terms: Public domain W3C validator