| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enumct | Unicode version | ||
| Description: A finitely enumerable set
is countable. Lemma 8.1.14 of [AczelRathjen],
p. 73 (except that our definition of countable does not require the set
to be inhabited). "Finitely enumerable" is defined as
|
| Ref | Expression |
|---|---|
| enumct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . . 9
| |
| 2 | foeq2 5541 |
. . . . . . . . . 10
| |
| 3 | 2 | adantl 277 |
. . . . . . . . 9
|
| 4 | 1, 3 | mpbid 147 |
. . . . . . . 8
|
| 5 | fo00 5605 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylib 122 |
. . . . . . 7
|
| 7 | 0ct 7262 |
. . . . . . . 8
| |
| 8 | djueq1 7195 |
. . . . . . . . . 10
| |
| 9 | foeq3 5542 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | 10 | exbidv 1871 |
. . . . . . . 8
|
| 12 | 7, 11 | mpbiri 168 |
. . . . . . 7
|
| 13 | 6, 12 | simpl2im 386 |
. . . . . 6
|
| 14 | omex 4682 |
. . . . . . . . 9
| |
| 15 | 14 | mptex 5858 |
. . . . . . . 8
|
| 16 | simpll 527 |
. . . . . . . . 9
| |
| 17 | simplr 528 |
. . . . . . . . 9
| |
| 18 | simpr 110 |
. . . . . . . . 9
| |
| 19 | eqid 2229 |
. . . . . . . . 9
| |
| 20 | 16, 17, 18, 19 | enumctlemm 7269 |
. . . . . . . 8
|
| 21 | foeq1 5540 |
. . . . . . . . 9
| |
| 22 | 21 | spcegv 2891 |
. . . . . . . 8
|
| 23 | 15, 20, 22 | mpsyl 65 |
. . . . . . 7
|
| 24 | fof 5544 |
. . . . . . . . . . 11
| |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . . 10
|
| 26 | 25, 18 | ffvelcdmd 5764 |
. . . . . . . . 9
|
| 27 | eleq1 2292 |
. . . . . . . . . 10
| |
| 28 | 27 | spcegv 2891 |
. . . . . . . . 9
|
| 29 | 26, 26, 28 | sylc 62 |
. . . . . . . 8
|
| 30 | ctm 7264 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl 14 |
. . . . . . 7
|
| 32 | 23, 31 | mpbird 167 |
. . . . . 6
|
| 33 | 0elnn 4708 |
. . . . . . 7
| |
| 34 | 33 | adantl 277 |
. . . . . 6
|
| 35 | 13, 32, 34 | mpjaodan 803 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 36 | exlimiv 1644 |
. . 3
|
| 38 | 37 | impcom 125 |
. 2
|
| 39 | 38 | rexlimiva 2643 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-1st 6276 df-2nd 6277 df-1o 6552 df-dju 7193 df-inl 7202 df-inr 7203 df-case 7239 |
| This theorem is referenced by: finct 7271 |
| Copyright terms: Public domain | W3C validator |