ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct Unicode version

Theorem enumct 7290
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, g, n

Proof of Theorem enumct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : n -onto-> A )
2 foeq2 5547 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( f : n -onto-> A  <->  f : (/)
-onto-> A ) )
32adantl 277 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f : n -onto-> A  <-> 
f : (/) -onto-> A ) )
41, 3mpbid 147 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : (/) -onto-> A )
5 fo00 5611 . . . . . . . 8  |-  ( f : (/) -onto-> A  <->  ( f  =  (/)  /\  A  =  (/) ) )
64, 5sylib 122 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f  =  (/)  /\  A  =  (/) ) )
7 0ct 7282 . . . . . . . 8  |-  E. g 
g : om -onto-> ( (/) 1o )
8 djueq1 7215 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A 1o )  =  ( (/) 1o ) )
9 foeq3 5548 . . . . . . . . . 10  |-  ( ( A 1o )  =  (
(/) 1o )  ->  (
g : om -onto-> ( A 1o )  <->  g : om -onto-> ( (/) 1o ) ) )
108, 9syl 14 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( g : om -onto-> ( A 1o )  <->  g : om -onto->
( (/) 1o ) ) )
1110exbidv 1871 . . . . . . . 8  |-  ( A  =  (/)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( (/) 1o ) ) )
127, 11mpbiri 168 . . . . . . 7  |-  ( A  =  (/)  ->  E. g 
g : om -onto-> ( A 1o ) )
136, 12simpl2im 386 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  E. g 
g : om -onto-> ( A 1o ) )
14 omex 4685 . . . . . . . . 9  |-  om  e.  _V
1514mptex 5869 . . . . . . . 8  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  e.  _V
16 simpll 527 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n -onto-> A )
17 simplr 528 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  n  e.  om )
18 simpr 110 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  (/)  e.  n
)
19 eqid 2229 . . . . . . . . 9  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )
2016, 17, 18, 19enumctlemm 7289 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A )
21 foeq1 5546 . . . . . . . . 9  |-  ( g  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
2221spcegv 2891 . . . . . . . 8  |-  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  e.  _V  ->  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
2315, 20, 22mpsyl 65 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> A
)
24 fof 5550 . . . . . . . . . . 11  |-  ( f : n -onto-> A  -> 
f : n --> A )
2524ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n --> A )
2625, 18ffvelcdmd 5773 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( f `  (/) )  e.  A
)
27 eleq1 2292 . . . . . . . . . 10  |-  ( x  =  ( f `  (/) )  ->  ( x  e.  A  <->  ( f `  (/) )  e.  A ) )
2827spcegv 2891 . . . . . . . . 9  |-  ( ( f `  (/) )  e.  A  ->  ( (
f `  (/) )  e.  A  ->  E. x  x  e.  A )
)
2926, 26, 28sylc 62 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. x  x  e.  A )
30 ctm 7284 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
3129, 30syl 14 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
3223, 31mpbird 167 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> ( A 1o ) )
33 0elnn 4711 . . . . . . 7  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
3433adantl 277 . . . . . 6  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  ( n  =  (/)  \/  (/)  e.  n ) )
3513, 32, 34mpjaodan 803 . . . . 5  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  E. g  g : om -onto-> ( A 1o ) )
3635ex 115 . . . 4  |-  ( f : n -onto-> A  -> 
( n  e.  om  ->  E. g  g : om -onto-> ( A 1o ) ) )
3736exlimiv 1644 . . 3  |-  ( E. f  f : n
-onto-> A  ->  ( n  e.  om  ->  E. g 
g : om -onto-> ( A 1o ) ) )
3837impcom 125 . 2  |-  ( ( n  e.  om  /\  E. f  f : n
-onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
3938rexlimiva 2643 1  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   E.wrex 2509   _Vcvv 2799   (/)c0 3491   ifcif 3602    |-> cmpt 4145   omcom 4682   -->wf 5314   -onto->wfo 5316   ` cfv 5318   1oc1o 6561   ⊔ cdju 7212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6292  df-2nd 6293  df-1o 6568  df-dju 7213  df-inl 7222  df-inr 7223  df-case 7259
This theorem is referenced by:  finct  7291
  Copyright terms: Public domain W3C validator