ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct Unicode version

Theorem enumct 6873
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, g, n

Proof of Theorem enumct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 497 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : n -onto-> A )
2 foeq2 5265 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( f : n -onto-> A  <->  f : (/)
-onto-> A ) )
32adantl 272 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f : n -onto-> A  <-> 
f : (/) -onto-> A ) )
41, 3mpbid 146 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : (/) -onto-> A )
5 fo00 5324 . . . . . . . 8  |-  ( f : (/) -onto-> A  <->  ( f  =  (/)  /\  A  =  (/) ) )
64, 5sylib 121 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f  =  (/)  /\  A  =  (/) ) )
7 0ct 6869 . . . . . . . 8  |-  E. g 
g : om -onto-> ( (/) 1o )
8 djueq1 6813 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A 1o )  =  ( (/) 1o ) )
9 foeq3 5266 . . . . . . . . . 10  |-  ( ( A 1o )  =  (
(/) 1o )  ->  (
g : om -onto-> ( A 1o )  <->  g : om -onto-> ( (/) 1o ) ) )
108, 9syl 14 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( g : om -onto-> ( A 1o )  <->  g : om -onto->
( (/) 1o ) ) )
1110exbidv 1760 . . . . . . . 8  |-  ( A  =  (/)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( (/) 1o ) ) )
127, 11mpbiri 167 . . . . . . 7  |-  ( A  =  (/)  ->  E. g 
g : om -onto-> ( A 1o ) )
136, 12simpl2im 379 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  E. g 
g : om -onto-> ( A 1o ) )
14 omex 4436 . . . . . . . . 9  |-  om  e.  _V
1514mptex 5562 . . . . . . . 8  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  e.  _V
16 simpll 497 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n -onto-> A )
17 simplr 498 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  n  e.  om )
18 simpr 109 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  (/)  e.  n
)
19 eqid 2095 . . . . . . . . 9  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )
2016, 17, 18, 19enumctlemm 6872 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A )
21 foeq1 5264 . . . . . . . . 9  |-  ( g  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
2221spcegv 2721 . . . . . . . 8  |-  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  e.  _V  ->  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
2315, 20, 22mpsyl 65 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> A
)
24 fof 5268 . . . . . . . . . . 11  |-  ( f : n -onto-> A  -> 
f : n --> A )
2524ad2antrr 473 . . . . . . . . . 10  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n --> A )
2625, 18ffvelrnd 5474 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( f `  (/) )  e.  A
)
27 eleq1 2157 . . . . . . . . . 10  |-  ( x  =  ( f `  (/) )  ->  ( x  e.  A  <->  ( f `  (/) )  e.  A ) )
2827spcegv 2721 . . . . . . . . 9  |-  ( ( f `  (/) )  e.  A  ->  ( (
f `  (/) )  e.  A  ->  E. x  x  e.  A )
)
2926, 26, 28sylc 62 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. x  x  e.  A )
30 ctm 6871 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
3129, 30syl 14 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
3223, 31mpbird 166 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> ( A 1o ) )
33 0elnn 4460 . . . . . . 7  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
3433adantl 272 . . . . . 6  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  ( n  =  (/)  \/  (/)  e.  n ) )
3513, 32, 34mpjaodan 750 . . . . 5  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  E. g  g : om -onto-> ( A 1o ) )
3635ex 114 . . . 4  |-  ( f : n -onto-> A  -> 
( n  e.  om  ->  E. g  g : om -onto-> ( A 1o ) ) )
3736exlimiv 1541 . . 3  |-  ( E. f  f : n
-onto-> A  ->  ( n  e.  om  ->  E. g 
g : om -onto-> ( A 1o ) ) )
3837impcom 124 . 2  |-  ( ( n  e.  om  /\  E. f  f : n
-onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
3938rexlimiva 2497 1  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 667    = wceq 1296   E.wex 1433    e. wcel 1445   E.wrex 2371   _Vcvv 2633   (/)c0 3302   ifcif 3413    |-> cmpt 3921   omcom 4433   -->wf 5045   -onto->wfo 5047   ` cfv 5049   1oc1o 6212   ⊔ cdju 6810
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1st 5949  df-2nd 5950  df-1o 6219  df-dju 6811  df-inl 6819  df-inr 6820  df-case 6855
This theorem is referenced by:  finct  6874
  Copyright terms: Public domain W3C validator