ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct Unicode version

Theorem enumct 7000
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, g, n

Proof of Theorem enumct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 518 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : n -onto-> A )
2 foeq2 5342 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( f : n -onto-> A  <->  f : (/)
-onto-> A ) )
32adantl 275 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f : n -onto-> A  <-> 
f : (/) -onto-> A ) )
41, 3mpbid 146 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : (/) -onto-> A )
5 fo00 5403 . . . . . . . 8  |-  ( f : (/) -onto-> A  <->  ( f  =  (/)  /\  A  =  (/) ) )
64, 5sylib 121 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f  =  (/)  /\  A  =  (/) ) )
7 0ct 6992 . . . . . . . 8  |-  E. g 
g : om -onto-> ( (/) 1o )
8 djueq1 6925 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A 1o )  =  ( (/) 1o ) )
9 foeq3 5343 . . . . . . . . . 10  |-  ( ( A 1o )  =  (
(/) 1o )  ->  (
g : om -onto-> ( A 1o )  <->  g : om -onto-> ( (/) 1o ) ) )
108, 9syl 14 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( g : om -onto-> ( A 1o )  <->  g : om -onto->
( (/) 1o ) ) )
1110exbidv 1797 . . . . . . . 8  |-  ( A  =  (/)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( (/) 1o ) ) )
127, 11mpbiri 167 . . . . . . 7  |-  ( A  =  (/)  ->  E. g 
g : om -onto-> ( A 1o ) )
136, 12simpl2im 383 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  E. g 
g : om -onto-> ( A 1o ) )
14 omex 4507 . . . . . . . . 9  |-  om  e.  _V
1514mptex 5646 . . . . . . . 8  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  e.  _V
16 simpll 518 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n -onto-> A )
17 simplr 519 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  n  e.  om )
18 simpr 109 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  (/)  e.  n
)
19 eqid 2139 . . . . . . . . 9  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )
2016, 17, 18, 19enumctlemm 6999 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A )
21 foeq1 5341 . . . . . . . . 9  |-  ( g  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
2221spcegv 2774 . . . . . . . 8  |-  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  e.  _V  ->  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
2315, 20, 22mpsyl 65 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> A
)
24 fof 5345 . . . . . . . . . . 11  |-  ( f : n -onto-> A  -> 
f : n --> A )
2524ad2antrr 479 . . . . . . . . . 10  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n --> A )
2625, 18ffvelrnd 5556 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( f `  (/) )  e.  A
)
27 eleq1 2202 . . . . . . . . . 10  |-  ( x  =  ( f `  (/) )  ->  ( x  e.  A  <->  ( f `  (/) )  e.  A ) )
2827spcegv 2774 . . . . . . . . 9  |-  ( ( f `  (/) )  e.  A  ->  ( (
f `  (/) )  e.  A  ->  E. x  x  e.  A )
)
2926, 26, 28sylc 62 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. x  x  e.  A )
30 ctm 6994 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
3129, 30syl 14 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
3223, 31mpbird 166 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> ( A 1o ) )
33 0elnn 4532 . . . . . . 7  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
3433adantl 275 . . . . . 6  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  ( n  =  (/)  \/  (/)  e.  n ) )
3513, 32, 34mpjaodan 787 . . . . 5  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  E. g  g : om -onto-> ( A 1o ) )
3635ex 114 . . . 4  |-  ( f : n -onto-> A  -> 
( n  e.  om  ->  E. g  g : om -onto-> ( A 1o ) ) )
3736exlimiv 1577 . . 3  |-  ( E. f  f : n
-onto-> A  ->  ( n  e.  om  ->  E. g 
g : om -onto-> ( A 1o ) ) )
3837impcom 124 . 2  |-  ( ( n  e.  om  /\  E. f  f : n
-onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
3938rexlimiva 2544 1  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   _Vcvv 2686   (/)c0 3363   ifcif 3474    |-> cmpt 3989   omcom 4504   -->wf 5119   -onto->wfo 5121   ` cfv 5123   1oc1o 6306   ⊔ cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  finct  7001
  Copyright terms: Public domain W3C validator