Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enumct | Unicode version |
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as ⊔ per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
enumct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . . . . 9 | |
2 | foeq2 5417 | . . . . . . . . . 10 | |
3 | 2 | adantl 275 | . . . . . . . . 9 |
4 | 1, 3 | mpbid 146 | . . . . . . . 8 |
5 | fo00 5478 | . . . . . . . 8 | |
6 | 4, 5 | sylib 121 | . . . . . . 7 |
7 | 0ct 7084 | . . . . . . . 8 ⊔ | |
8 | djueq1 7017 | . . . . . . . . . 10 ⊔ ⊔ | |
9 | foeq3 5418 | . . . . . . . . . 10 ⊔ ⊔ ⊔ ⊔ | |
10 | 8, 9 | syl 14 | . . . . . . . . 9 ⊔ ⊔ |
11 | 10 | exbidv 1818 | . . . . . . . 8 ⊔ ⊔ |
12 | 7, 11 | mpbiri 167 | . . . . . . 7 ⊔ |
13 | 6, 12 | simpl2im 384 | . . . . . 6 ⊔ |
14 | omex 4577 | . . . . . . . . 9 | |
15 | 14 | mptex 5722 | . . . . . . . 8 |
16 | simpll 524 | . . . . . . . . 9 | |
17 | simplr 525 | . . . . . . . . 9 | |
18 | simpr 109 | . . . . . . . . 9 | |
19 | eqid 2170 | . . . . . . . . 9 | |
20 | 16, 17, 18, 19 | enumctlemm 7091 | . . . . . . . 8 |
21 | foeq1 5416 | . . . . . . . . 9 | |
22 | 21 | spcegv 2818 | . . . . . . . 8 |
23 | 15, 20, 22 | mpsyl 65 | . . . . . . 7 |
24 | fof 5420 | . . . . . . . . . . 11 | |
25 | 24 | ad2antrr 485 | . . . . . . . . . 10 |
26 | 25, 18 | ffvelrnd 5632 | . . . . . . . . 9 |
27 | eleq1 2233 | . . . . . . . . . 10 | |
28 | 27 | spcegv 2818 | . . . . . . . . 9 |
29 | 26, 26, 28 | sylc 62 | . . . . . . . 8 |
30 | ctm 7086 | . . . . . . . 8 ⊔ | |
31 | 29, 30 | syl 14 | . . . . . . 7 ⊔ |
32 | 23, 31 | mpbird 166 | . . . . . 6 ⊔ |
33 | 0elnn 4603 | . . . . . . 7 | |
34 | 33 | adantl 275 | . . . . . 6 |
35 | 13, 32, 34 | mpjaodan 793 | . . . . 5 ⊔ |
36 | 35 | ex 114 | . . . 4 ⊔ |
37 | 36 | exlimiv 1591 | . . 3 ⊔ |
38 | 37 | impcom 124 | . 2 ⊔ |
39 | 38 | rexlimiva 2582 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 c0 3414 cif 3526 cmpt 4050 com 4574 wf 5194 wfo 5196 cfv 5198 c1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 df-case 7061 |
This theorem is referenced by: finct 7093 |
Copyright terms: Public domain | W3C validator |