ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct Unicode version

Theorem enumct 7092
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, g, n

Proof of Theorem enumct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 524 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : n -onto-> A )
2 foeq2 5417 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( f : n -onto-> A  <->  f : (/)
-onto-> A ) )
32adantl 275 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f : n -onto-> A  <-> 
f : (/) -onto-> A ) )
41, 3mpbid 146 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : (/) -onto-> A )
5 fo00 5478 . . . . . . . 8  |-  ( f : (/) -onto-> A  <->  ( f  =  (/)  /\  A  =  (/) ) )
64, 5sylib 121 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f  =  (/)  /\  A  =  (/) ) )
7 0ct 7084 . . . . . . . 8  |-  E. g 
g : om -onto-> ( (/) 1o )
8 djueq1 7017 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A 1o )  =  ( (/) 1o ) )
9 foeq3 5418 . . . . . . . . . 10  |-  ( ( A 1o )  =  (
(/) 1o )  ->  (
g : om -onto-> ( A 1o )  <->  g : om -onto-> ( (/) 1o ) ) )
108, 9syl 14 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( g : om -onto-> ( A 1o )  <->  g : om -onto->
( (/) 1o ) ) )
1110exbidv 1818 . . . . . . . 8  |-  ( A  =  (/)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( (/) 1o ) ) )
127, 11mpbiri 167 . . . . . . 7  |-  ( A  =  (/)  ->  E. g 
g : om -onto-> ( A 1o ) )
136, 12simpl2im 384 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  E. g 
g : om -onto-> ( A 1o ) )
14 omex 4577 . . . . . . . . 9  |-  om  e.  _V
1514mptex 5722 . . . . . . . 8  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  e.  _V
16 simpll 524 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n -onto-> A )
17 simplr 525 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  n  e.  om )
18 simpr 109 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  (/)  e.  n
)
19 eqid 2170 . . . . . . . . 9  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )
2016, 17, 18, 19enumctlemm 7091 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A )
21 foeq1 5416 . . . . . . . . 9  |-  ( g  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
2221spcegv 2818 . . . . . . . 8  |-  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  e.  _V  ->  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
2315, 20, 22mpsyl 65 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> A
)
24 fof 5420 . . . . . . . . . . 11  |-  ( f : n -onto-> A  -> 
f : n --> A )
2524ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n --> A )
2625, 18ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( f `  (/) )  e.  A
)
27 eleq1 2233 . . . . . . . . . 10  |-  ( x  =  ( f `  (/) )  ->  ( x  e.  A  <->  ( f `  (/) )  e.  A ) )
2827spcegv 2818 . . . . . . . . 9  |-  ( ( f `  (/) )  e.  A  ->  ( (
f `  (/) )  e.  A  ->  E. x  x  e.  A )
)
2926, 26, 28sylc 62 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. x  x  e.  A )
30 ctm 7086 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
3129, 30syl 14 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
3223, 31mpbird 166 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> ( A 1o ) )
33 0elnn 4603 . . . . . . 7  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
3433adantl 275 . . . . . 6  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  ( n  =  (/)  \/  (/)  e.  n ) )
3513, 32, 34mpjaodan 793 . . . . 5  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  E. g  g : om -onto-> ( A 1o ) )
3635ex 114 . . . 4  |-  ( f : n -onto-> A  -> 
( n  e.  om  ->  E. g  g : om -onto-> ( A 1o ) ) )
3736exlimiv 1591 . . 3  |-  ( E. f  f : n
-onto-> A  ->  ( n  e.  om  ->  E. g 
g : om -onto-> ( A 1o ) ) )
3837impcom 124 . 2  |-  ( ( n  e.  om  /\  E. f  f : n
-onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
3938rexlimiva 2582 1  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730   (/)c0 3414   ifcif 3526    |-> cmpt 4050   omcom 4574   -->wf 5194   -onto->wfo 5196   ` cfv 5198   1oc1o 6388   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-dju 7015  df-inl 7024  df-inr 7025  df-case 7061
This theorem is referenced by:  finct  7093
  Copyright terms: Public domain W3C validator