ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumct Unicode version

Theorem enumct 7181
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as  E. n  e. 
om E. f f : n -onto-> A per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as  E. g g : om -onto-> ( A 1o ) per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.)
Assertion
Ref Expression
enumct  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Distinct variable group:    A, f, g, n

Proof of Theorem enumct
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : n -onto-> A )
2 foeq2 5477 . . . . . . . . . 10  |-  ( n  =  (/)  ->  ( f : n -onto-> A  <->  f : (/)
-onto-> A ) )
32adantl 277 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f : n -onto-> A  <-> 
f : (/) -onto-> A ) )
41, 3mpbid 147 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  f : (/) -onto-> A )
5 fo00 5540 . . . . . . . 8  |-  ( f : (/) -onto-> A  <->  ( f  =  (/)  /\  A  =  (/) ) )
64, 5sylib 122 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  (
f  =  (/)  /\  A  =  (/) ) )
7 0ct 7173 . . . . . . . 8  |-  E. g 
g : om -onto-> ( (/) 1o )
8 djueq1 7106 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A 1o )  =  ( (/) 1o ) )
9 foeq3 5478 . . . . . . . . . 10  |-  ( ( A 1o )  =  (
(/) 1o )  ->  (
g : om -onto-> ( A 1o )  <->  g : om -onto-> ( (/) 1o ) ) )
108, 9syl 14 . . . . . . . . 9  |-  ( A  =  (/)  ->  ( g : om -onto-> ( A 1o )  <->  g : om -onto->
( (/) 1o ) ) )
1110exbidv 1839 . . . . . . . 8  |-  ( A  =  (/)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto->
( (/) 1o ) ) )
127, 11mpbiri 168 . . . . . . 7  |-  ( A  =  (/)  ->  E. g 
g : om -onto-> ( A 1o ) )
136, 12simpl2im 386 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  n  =  (/) )  ->  E. g 
g : om -onto-> ( A 1o ) )
14 omex 4629 . . . . . . . . 9  |-  om  e.  _V
1514mptex 5788 . . . . . . . 8  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  e.  _V
16 simpll 527 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n -onto-> A )
17 simplr 528 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  n  e.  om )
18 simpr 110 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  (/)  e.  n
)
19 eqid 2196 . . . . . . . . 9  |-  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k
) ,  ( f `
 (/) ) ) )  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )
2016, 17, 18, 19enumctlemm 7180 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A )
21 foeq1 5476 . . . . . . . . 9  |-  ( g  =  ( k  e. 
om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  -> 
( g : om -onto-> A 
<->  ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A
) )
2221spcegv 2852 . . . . . . . 8  |-  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) )  e.  _V  ->  ( ( k  e.  om  |->  if ( k  e.  n ,  ( f `  k ) ,  ( f `  (/) ) ) ) : om -onto-> A  ->  E. g  g : om -onto-> A ) )
2315, 20, 22mpsyl 65 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> A
)
24 fof 5480 . . . . . . . . . . 11  |-  ( f : n -onto-> A  -> 
f : n --> A )
2524ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  f :
n --> A )
2625, 18ffvelcdmd 5698 . . . . . . . . 9  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( f `  (/) )  e.  A
)
27 eleq1 2259 . . . . . . . . . 10  |-  ( x  =  ( f `  (/) )  ->  ( x  e.  A  <->  ( f `  (/) )  e.  A ) )
2827spcegv 2852 . . . . . . . . 9  |-  ( ( f `  (/) )  e.  A  ->  ( (
f `  (/) )  e.  A  ->  E. x  x  e.  A )
)
2926, 26, 28sylc 62 . . . . . . . 8  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. x  x  e.  A )
30 ctm 7175 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( E. g  g : om -onto-> ( A 1o )  <->  E. g  g : om -onto-> A ) )
3129, 30syl 14 . . . . . . 7  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  ( E. g  g : om -onto->
( A 1o )  <->  E. g  g : om -onto-> A ) )
3223, 31mpbird 167 . . . . . 6  |-  ( ( ( f : n
-onto-> A  /\  n  e. 
om )  /\  (/)  e.  n
)  ->  E. g 
g : om -onto-> ( A 1o ) )
33 0elnn 4655 . . . . . . 7  |-  ( n  e.  om  ->  (
n  =  (/)  \/  (/)  e.  n
) )
3433adantl 277 . . . . . 6  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  ( n  =  (/)  \/  (/)  e.  n ) )
3513, 32, 34mpjaodan 799 . . . . 5  |-  ( ( f : n -onto-> A  /\  n  e.  om )  ->  E. g  g : om -onto-> ( A 1o ) )
3635ex 115 . . . 4  |-  ( f : n -onto-> A  -> 
( n  e.  om  ->  E. g  g : om -onto-> ( A 1o ) ) )
3736exlimiv 1612 . . 3  |-  ( E. f  f : n
-onto-> A  ->  ( n  e.  om  ->  E. g 
g : om -onto-> ( A 1o ) ) )
3837impcom 125 . 2  |-  ( ( n  e.  om  /\  E. f  f : n
-onto-> A )  ->  E. g 
g : om -onto-> ( A 1o ) )
3938rexlimiva 2609 1  |-  ( E. n  e.  om  E. f  f : n
-onto-> A  ->  E. g 
g : om -onto-> ( A 1o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   _Vcvv 2763   (/)c0 3450   ifcif 3561    |-> cmpt 4094   omcom 4626   -->wf 5254   -onto->wfo 5256   ` cfv 5258   1oc1o 6467   ⊔ cdju 7103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1st 6198  df-2nd 6199  df-1o 6474  df-dju 7104  df-inl 7113  df-inr 7114  df-case 7150
This theorem is referenced by:  finct  7182
  Copyright terms: Public domain W3C validator