| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enumct | Unicode version | ||
| Description: A finitely enumerable set
is countable. Lemma 8.1.14 of [AczelRathjen],
p. 73 (except that our definition of countable does not require the set
to be inhabited). "Finitely enumerable" is defined as
|
| Ref | Expression |
|---|---|
| enumct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . . . . . 9
| |
| 2 | foeq2 5504 |
. . . . . . . . . 10
| |
| 3 | 2 | adantl 277 |
. . . . . . . . 9
|
| 4 | 1, 3 | mpbid 147 |
. . . . . . . 8
|
| 5 | fo00 5568 |
. . . . . . . 8
| |
| 6 | 4, 5 | sylib 122 |
. . . . . . 7
|
| 7 | 0ct 7221 |
. . . . . . . 8
| |
| 8 | djueq1 7154 |
. . . . . . . . . 10
| |
| 9 | foeq3 5505 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | 10 | exbidv 1849 |
. . . . . . . 8
|
| 12 | 7, 11 | mpbiri 168 |
. . . . . . 7
|
| 13 | 6, 12 | simpl2im 386 |
. . . . . 6
|
| 14 | omex 4646 |
. . . . . . . . 9
| |
| 15 | 14 | mptex 5820 |
. . . . . . . 8
|
| 16 | simpll 527 |
. . . . . . . . 9
| |
| 17 | simplr 528 |
. . . . . . . . 9
| |
| 18 | simpr 110 |
. . . . . . . . 9
| |
| 19 | eqid 2206 |
. . . . . . . . 9
| |
| 20 | 16, 17, 18, 19 | enumctlemm 7228 |
. . . . . . . 8
|
| 21 | foeq1 5503 |
. . . . . . . . 9
| |
| 22 | 21 | spcegv 2863 |
. . . . . . . 8
|
| 23 | 15, 20, 22 | mpsyl 65 |
. . . . . . 7
|
| 24 | fof 5507 |
. . . . . . . . . . 11
| |
| 25 | 24 | ad2antrr 488 |
. . . . . . . . . 10
|
| 26 | 25, 18 | ffvelcdmd 5726 |
. . . . . . . . 9
|
| 27 | eleq1 2269 |
. . . . . . . . . 10
| |
| 28 | 27 | spcegv 2863 |
. . . . . . . . 9
|
| 29 | 26, 26, 28 | sylc 62 |
. . . . . . . 8
|
| 30 | ctm 7223 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl 14 |
. . . . . . 7
|
| 32 | 23, 31 | mpbird 167 |
. . . . . 6
|
| 33 | 0elnn 4672 |
. . . . . . 7
| |
| 34 | 33 | adantl 277 |
. . . . . 6
|
| 35 | 13, 32, 34 | mpjaodan 800 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 36 | exlimiv 1622 |
. . 3
|
| 38 | 37 | impcom 125 |
. 2
|
| 39 | 38 | rexlimiva 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-1st 6236 df-2nd 6237 df-1o 6512 df-dju 7152 df-inl 7161 df-inr 7162 df-case 7198 |
| This theorem is referenced by: finct 7230 |
| Copyright terms: Public domain | W3C validator |