Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enumct | Unicode version |
Description: A finitely enumerable set is countable. Lemma 8.1.14 of [AczelRathjen], p. 73 (except that our definition of countable does not require the set to be inhabited). "Finitely enumerable" is defined as per Definition 8.1.4 of [AczelRathjen], p. 71 and "countable" is defined as ⊔ per [BauerSwan], p. 14:3. (Contributed by Jim Kingdon, 13-Mar-2023.) |
Ref | Expression |
---|---|
enumct | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 524 | . . . . . . . . 9 | |
2 | foeq2 5415 | . . . . . . . . . 10 | |
3 | 2 | adantl 275 | . . . . . . . . 9 |
4 | 1, 3 | mpbid 146 | . . . . . . . 8 |
5 | fo00 5476 | . . . . . . . 8 | |
6 | 4, 5 | sylib 121 | . . . . . . 7 |
7 | 0ct 7080 | . . . . . . . 8 ⊔ | |
8 | djueq1 7013 | . . . . . . . . . 10 ⊔ ⊔ | |
9 | foeq3 5416 | . . . . . . . . . 10 ⊔ ⊔ ⊔ ⊔ | |
10 | 8, 9 | syl 14 | . . . . . . . . 9 ⊔ ⊔ |
11 | 10 | exbidv 1818 | . . . . . . . 8 ⊔ ⊔ |
12 | 7, 11 | mpbiri 167 | . . . . . . 7 ⊔ |
13 | 6, 12 | simpl2im 384 | . . . . . 6 ⊔ |
14 | omex 4575 | . . . . . . . . 9 | |
15 | 14 | mptex 5719 | . . . . . . . 8 |
16 | simpll 524 | . . . . . . . . 9 | |
17 | simplr 525 | . . . . . . . . 9 | |
18 | simpr 109 | . . . . . . . . 9 | |
19 | eqid 2170 | . . . . . . . . 9 | |
20 | 16, 17, 18, 19 | enumctlemm 7087 | . . . . . . . 8 |
21 | foeq1 5414 | . . . . . . . . 9 | |
22 | 21 | spcegv 2818 | . . . . . . . 8 |
23 | 15, 20, 22 | mpsyl 65 | . . . . . . 7 |
24 | fof 5418 | . . . . . . . . . . 11 | |
25 | 24 | ad2antrr 485 | . . . . . . . . . 10 |
26 | 25, 18 | ffvelrnd 5629 | . . . . . . . . 9 |
27 | eleq1 2233 | . . . . . . . . . 10 | |
28 | 27 | spcegv 2818 | . . . . . . . . 9 |
29 | 26, 26, 28 | sylc 62 | . . . . . . . 8 |
30 | ctm 7082 | . . . . . . . 8 ⊔ | |
31 | 29, 30 | syl 14 | . . . . . . 7 ⊔ |
32 | 23, 31 | mpbird 166 | . . . . . 6 ⊔ |
33 | 0elnn 4601 | . . . . . . 7 | |
34 | 33 | adantl 275 | . . . . . 6 |
35 | 13, 32, 34 | mpjaodan 793 | . . . . 5 ⊔ |
36 | 35 | ex 114 | . . . 4 ⊔ |
37 | 36 | exlimiv 1591 | . . 3 ⊔ |
38 | 37 | impcom 124 | . 2 ⊔ |
39 | 38 | rexlimiva 2582 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 c0 3414 cif 3525 cmpt 4048 com 4572 wf 5192 wfo 5194 cfv 5196 c1o 6385 ⊔ cdju 7010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-1st 6116 df-2nd 6117 df-1o 6392 df-dju 7011 df-inl 7020 df-inr 7021 df-case 7057 |
This theorem is referenced by: finct 7089 |
Copyright terms: Public domain | W3C validator |