| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > enumct | Unicode version | ||
| Description: A finitely enumerable set
is countable.  Lemma 8.1.14 of [AczelRathjen],
       p. 73 (except that our definition of countable does not require the set
       to be inhabited).  "Finitely enumerable" is defined as
        | 
| Ref | Expression | 
|---|---|
| enumct | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpll 527 | 
. . . . . . . . 9
 | |
| 2 | foeq2 5477 | 
. . . . . . . . . 10
 | |
| 3 | 2 | adantl 277 | 
. . . . . . . . 9
 | 
| 4 | 1, 3 | mpbid 147 | 
. . . . . . . 8
 | 
| 5 | fo00 5540 | 
. . . . . . . 8
 | |
| 6 | 4, 5 | sylib 122 | 
. . . . . . 7
 | 
| 7 | 0ct 7173 | 
. . . . . . . 8
 | |
| 8 | djueq1 7106 | 
. . . . . . . . . 10
 | |
| 9 | foeq3 5478 | 
. . . . . . . . . 10
 | |
| 10 | 8, 9 | syl 14 | 
. . . . . . . . 9
 | 
| 11 | 10 | exbidv 1839 | 
. . . . . . . 8
 | 
| 12 | 7, 11 | mpbiri 168 | 
. . . . . . 7
 | 
| 13 | 6, 12 | simpl2im 386 | 
. . . . . 6
 | 
| 14 | omex 4629 | 
. . . . . . . . 9
 | |
| 15 | 14 | mptex 5788 | 
. . . . . . . 8
 | 
| 16 | simpll 527 | 
. . . . . . . . 9
 | |
| 17 | simplr 528 | 
. . . . . . . . 9
 | |
| 18 | simpr 110 | 
. . . . . . . . 9
 | |
| 19 | eqid 2196 | 
. . . . . . . . 9
 | |
| 20 | 16, 17, 18, 19 | enumctlemm 7180 | 
. . . . . . . 8
 | 
| 21 | foeq1 5476 | 
. . . . . . . . 9
 | |
| 22 | 21 | spcegv 2852 | 
. . . . . . . 8
 | 
| 23 | 15, 20, 22 | mpsyl 65 | 
. . . . . . 7
 | 
| 24 | fof 5480 | 
. . . . . . . . . . 11
 | |
| 25 | 24 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 26 | 25, 18 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 27 | eleq1 2259 | 
. . . . . . . . . 10
 | |
| 28 | 27 | spcegv 2852 | 
. . . . . . . . 9
 | 
| 29 | 26, 26, 28 | sylc 62 | 
. . . . . . . 8
 | 
| 30 | ctm 7175 | 
. . . . . . . 8
 | |
| 31 | 29, 30 | syl 14 | 
. . . . . . 7
 | 
| 32 | 23, 31 | mpbird 167 | 
. . . . . 6
 | 
| 33 | 0elnn 4655 | 
. . . . . . 7
 | |
| 34 | 33 | adantl 277 | 
. . . . . 6
 | 
| 35 | 13, 32, 34 | mpjaodan 799 | 
. . . . 5
 | 
| 36 | 35 | ex 115 | 
. . . 4
 | 
| 37 | 36 | exlimiv 1612 | 
. . 3
 | 
| 38 | 37 | impcom 125 | 
. 2
 | 
| 39 | 38 | rexlimiva 2609 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1st 6198 df-2nd 6199 df-1o 6474 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 | 
| This theorem is referenced by: finct 7182 | 
| Copyright terms: Public domain | W3C validator |