ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdssub Unicode version

Theorem ndvdssub 11918
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )

Proof of Theorem ndvdssub
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9172 . . . . . . . 8  |-  ( K  e.  NN  ->  K  e.  NN0 )
2 nnne0 8936 . . . . . . . 8  |-  ( K  e.  NN  ->  K  =/=  0 )
31, 2jca 306 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  e.  NN0  /\  K  =/=  0 ) )
4 df-ne 2348 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
54anbi2i 457 . . . . . . . . . . 11  |-  ( ( K  <  D  /\  K  =/=  0 )  <->  ( K  <  D  /\  -.  K  =  0 ) )
6 divalg2 11914 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
7 breq1 4003 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  (
r  <  D  <->  x  <  D ) )
8 oveq2 5877 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
98breq2d 4012 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
107, 9anbi12d 473 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  x  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( x  <  D  /\  D  ||  ( N  -  x ) ) ) )
1110reu4 2931 . . . . . . . . . . . . . . . . . . 19  |-  ( E! r  e.  NN0  (
r  <  D  /\  D  ||  ( N  -  r ) )  <->  ( E. r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
126, 11sylib 122 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E. r  e. 
NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  A. r  e.  NN0  A. x  e. 
NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
13 nngt0 8933 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( D  e.  NN  ->  0  <  D )
14133ad2ant2 1019 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  0  <  D )
15 zcn 9247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ZZ  ->  N  e.  CC )
1615subid1d 8247 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
1716breq2d 4012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ZZ  ->  ( D  ||  ( N  - 
0 )  <->  D  ||  N
) )
1817biimpar 297 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  ZZ  /\  D  ||  N )  ->  D  ||  ( N  - 
0 ) )
19183adant2 1016 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  D  ||  ( N  -  0 ) )
2014, 19jca 306 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) )
21203expa 1203 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )
2221anim2i 342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N ) )  -> 
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2322ancoms 268 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) ) )
24 0nn0 9180 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  NN0
25 breq1 4003 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  (
x  <  D  <->  0  <  D ) )
26 oveq2 5877 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  0  ->  ( N  -  x )  =  ( N  - 
0 ) )
2726breq2d 4012 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  0 ) ) )
2825, 27anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  0  ->  (
( x  <  D  /\  D  ||  ( N  -  x ) )  <-> 
( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2928anbi2d 464 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( x  <  D  /\  D  ||  ( N  -  x
) ) )  <->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) ) )
30 eqeq2 2187 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
r  =  x  <->  r  = 
0 ) )
3129, 30imbi12d 234 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  0  ->  (
( ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  <->  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  ->  r  = 
0 ) ) )
3231rspcv 2837 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  NN0  ->  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) ) )
3324, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) )
3423, 33syl5 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  r  =  0 ) )
3534expd 258 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
3635ralimi 2540 . . . . . . . . . . . . . . . . . 18  |-  ( A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
3712, 36simpl2im 386 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
38 r19.21v 2554 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 ) )  <->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
3937, 38sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
4039expd 258 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) ) )
4140pm2.43i 49 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
42413impia 1200 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) )
43 breq1 4003 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  (
r  <  D  <->  K  <  D ) )
44 oveq2 5877 . . . . . . . . . . . . . . . . 17  |-  ( r  =  K  ->  ( N  -  r )  =  ( N  -  K ) )
4544breq2d 4012 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  K )
) )
4643, 45anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( K  <  D  /\  D  ||  ( N  -  K ) ) ) )
47 eqeq1 2184 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
r  =  0  <->  K  =  0 ) )
4846, 47imbi12d 234 . . . . . . . . . . . . . 14  |-  ( r  =  K  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 )  <->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
4948rspcv 2837 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 )  ->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
5042, 49syl5com 29 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 ) ) )
51 pm3.37 689 . . . . . . . . . . . 12  |-  ( ( ( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 )  ->  ( ( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K )
) )
5250, 51syl6 33 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K
) ) ) )
535, 52syl7bi 165 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  K  =/=  0
)  ->  -.  D  ||  ( N  -  K
) ) ) )
5453exp4a 366 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  ( K  <  D  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5554com23 78 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN0  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5655imp4a 349 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  (
( K  e.  NN0  /\  K  =/=  0 )  ->  -.  D  ||  ( N  -  K )
) ) )
573, 56syl7 69 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN  ->  -.  D  ||  ( N  -  K ) ) ) )
5857com23 78 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN  ->  ( K  <  D  ->  -.  D  ||  ( N  -  K ) ) ) )
5958impd 254 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
( K  e.  NN  /\  K  <  D )  ->  -.  D  ||  ( N  -  K )
) )
60593expia 1205 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  -.  D  ||  ( N  -  K ) ) ) )
6160com23 78 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) ) )
62613impia 1200 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456   E!wreu 2457   class class class wbr 4000  (class class class)co 5869   0cc0 7802    < clt 7982    - cmin 8118   NNcn 8908   NN0cn0 9165   ZZcz 9242    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779
This theorem is referenced by:  ndvdsadd  11919
  Copyright terms: Public domain W3C validator