ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdssub Unicode version

Theorem ndvdssub 11867
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )

Proof of Theorem ndvdssub
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9121 . . . . . . . 8  |-  ( K  e.  NN  ->  K  e.  NN0 )
2 nnne0 8885 . . . . . . . 8  |-  ( K  e.  NN  ->  K  =/=  0 )
31, 2jca 304 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  e.  NN0  /\  K  =/=  0 ) )
4 df-ne 2337 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
54anbi2i 453 . . . . . . . . . . 11  |-  ( ( K  <  D  /\  K  =/=  0 )  <->  ( K  <  D  /\  -.  K  =  0 ) )
6 divalg2 11863 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
7 breq1 3985 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  (
r  <  D  <->  x  <  D ) )
8 oveq2 5850 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
98breq2d 3994 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
107, 9anbi12d 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  x  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( x  <  D  /\  D  ||  ( N  -  x ) ) ) )
1110reu4 2920 . . . . . . . . . . . . . . . . . . 19  |-  ( E! r  e.  NN0  (
r  <  D  /\  D  ||  ( N  -  r ) )  <->  ( E. r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
126, 11sylib 121 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E. r  e. 
NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  A. r  e.  NN0  A. x  e. 
NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
13 nngt0 8882 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( D  e.  NN  ->  0  <  D )
14133ad2ant2 1009 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  0  <  D )
15 zcn 9196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ZZ  ->  N  e.  CC )
1615subid1d 8198 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
1716breq2d 3994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ZZ  ->  ( D  ||  ( N  - 
0 )  <->  D  ||  N
) )
1817biimpar 295 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  ZZ  /\  D  ||  N )  ->  D  ||  ( N  - 
0 ) )
19183adant2 1006 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  D  ||  ( N  -  0 ) )
2014, 19jca 304 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) )
21203expa 1193 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )
2221anim2i 340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N ) )  -> 
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2322ancoms 266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) ) )
24 0nn0 9129 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  NN0
25 breq1 3985 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  (
x  <  D  <->  0  <  D ) )
26 oveq2 5850 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  0  ->  ( N  -  x )  =  ( N  - 
0 ) )
2726breq2d 3994 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  0 ) ) )
2825, 27anbi12d 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  0  ->  (
( x  <  D  /\  D  ||  ( N  -  x ) )  <-> 
( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2928anbi2d 460 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( x  <  D  /\  D  ||  ( N  -  x
) ) )  <->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) ) )
30 eqeq2 2175 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
r  =  x  <->  r  = 
0 ) )
3129, 30imbi12d 233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  0  ->  (
( ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  <->  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  ->  r  = 
0 ) ) )
3231rspcv 2826 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  NN0  ->  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) ) )
3324, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) )
3423, 33syl5 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  r  =  0 ) )
3534expd 256 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
3635ralimi 2529 . . . . . . . . . . . . . . . . . 18  |-  ( A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
3712, 36simpl2im 384 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
38 r19.21v 2543 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 ) )  <->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
3937, 38sylib 121 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
4039expd 256 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) ) )
4140pm2.43i 49 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
42413impia 1190 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) )
43 breq1 3985 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  (
r  <  D  <->  K  <  D ) )
44 oveq2 5850 . . . . . . . . . . . . . . . . 17  |-  ( r  =  K  ->  ( N  -  r )  =  ( N  -  K ) )
4544breq2d 3994 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  K )
) )
4643, 45anbi12d 465 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( K  <  D  /\  D  ||  ( N  -  K ) ) ) )
47 eqeq1 2172 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
r  =  0  <->  K  =  0 ) )
4846, 47imbi12d 233 . . . . . . . . . . . . . 14  |-  ( r  =  K  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 )  <->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
4948rspcv 2826 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 )  ->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
5042, 49syl5com 29 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 ) ) )
51 pm3.37 679 . . . . . . . . . . . 12  |-  ( ( ( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 )  ->  ( ( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K )
) )
5250, 51syl6 33 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K
) ) ) )
535, 52syl7bi 164 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  K  =/=  0
)  ->  -.  D  ||  ( N  -  K
) ) ) )
5453exp4a 364 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  ( K  <  D  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5554com23 78 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN0  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5655imp4a 347 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  (
( K  e.  NN0  /\  K  =/=  0 )  ->  -.  D  ||  ( N  -  K )
) ) )
573, 56syl7 69 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN  ->  -.  D  ||  ( N  -  K ) ) ) )
5857com23 78 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN  ->  ( K  <  D  ->  -.  D  ||  ( N  -  K ) ) ) )
5958impd 252 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
( K  e.  NN  /\  K  <  D )  ->  -.  D  ||  ( N  -  K )
) )
60593expia 1195 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  -.  D  ||  ( N  -  K ) ) ) )
6160com23 78 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) ) )
62613impia 1190 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   E.wrex 2445   E!wreu 2446   class class class wbr 3982  (class class class)co 5842   0cc0 7753    < clt 7933    - cmin 8069   NNcn 8857   NN0cn0 9114   ZZcz 9191    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728
This theorem is referenced by:  ndvdsadd  11868
  Copyright terms: Public domain W3C validator