ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndvdssub Unicode version

Theorem ndvdssub 11820
Description: Corollary of the division algorithm. If an integer  D greater than  1 divides  N, then it does not divide any of  N  -  1,  N  -  2...  N  -  ( D  -  1 ). (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
ndvdssub  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )

Proof of Theorem ndvdssub
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 9097 . . . . . . . 8  |-  ( K  e.  NN  ->  K  e.  NN0 )
2 nnne0 8861 . . . . . . . 8  |-  ( K  e.  NN  ->  K  =/=  0 )
31, 2jca 304 . . . . . . 7  |-  ( K  e.  NN  ->  ( K  e.  NN0  /\  K  =/=  0 ) )
4 df-ne 2328 . . . . . . . . . . . 12  |-  ( K  =/=  0  <->  -.  K  =  0 )
54anbi2i 453 . . . . . . . . . . 11  |-  ( ( K  <  D  /\  K  =/=  0 )  <->  ( K  <  D  /\  -.  K  =  0 ) )
6 divalg2 11816 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  E! r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r ) ) )
7 breq1 3968 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  (
r  <  D  <->  x  <  D ) )
8 oveq2 5832 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( r  =  x  ->  ( N  -  r )  =  ( N  -  x ) )
98breq2d 3977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( r  =  x  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  x )
) )
107, 9anbi12d 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  x  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( x  <  D  /\  D  ||  ( N  -  x ) ) ) )
1110reu4 2906 . . . . . . . . . . . . . . . . . . 19  |-  ( E! r  e.  NN0  (
r  <  D  /\  D  ||  ( N  -  r ) )  <->  ( E. r  e.  NN0  ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
126, 11sylib 121 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( E. r  e. 
NN0  ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  A. r  e.  NN0  A. x  e. 
NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x ) ) )
13 nngt0 8858 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( D  e.  NN  ->  0  <  D )
14133ad2ant2 1004 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  0  <  D )
15 zcn 9172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  e.  ZZ  ->  N  e.  CC )
1615subid1d 8175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  e.  ZZ  ->  ( N  -  0 )  =  N )
1716breq2d 3977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  ZZ  ->  ( D  ||  ( N  - 
0 )  <->  D  ||  N
) )
1817biimpar 295 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( N  e.  ZZ  /\  D  ||  N )  ->  D  ||  ( N  - 
0 ) )
19183adant2 1001 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  D  ||  ( N  -  0 ) )
2014, 19jca 304 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) )
21203expa 1185 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )
2221anim2i 340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N ) )  -> 
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2322ancoms 266 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
0  <  D  /\  D  ||  ( N  - 
0 ) ) ) )
24 0nn0 9105 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  NN0
25 breq1 3968 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  (
x  <  D  <->  0  <  D ) )
26 oveq2 5832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( x  =  0  ->  ( N  -  x )  =  ( N  - 
0 ) )
2726breq2d 3977 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  0  ->  ( D  ||  ( N  -  x )  <->  D  ||  ( N  -  0 ) ) )
2825, 27anbi12d 465 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  0  ->  (
( x  <  D  /\  D  ||  ( N  -  x ) )  <-> 
( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) )
2928anbi2d 460 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( x  <  D  /\  D  ||  ( N  -  x
) ) )  <->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) ) ) )
30 eqeq2 2167 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  0  ->  (
r  =  x  <->  r  = 
0 ) )
3129, 30imbi12d 233 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  0  ->  (
( ( ( r  <  D  /\  D  ||  ( N  -  r
) )  /\  (
x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  <->  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  ->  r  = 
0 ) ) )
3231rspcv 2812 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 0  e.  NN0  ->  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) ) )
3324, 32ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  /\  ( 0  <  D  /\  D  ||  ( N  -  0 ) ) )  -> 
r  =  0 ) )
3423, 33syl5 32 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  /\  (
r  <  D  /\  D  ||  ( N  -  r ) ) )  ->  r  =  0 ) )
3534expd 256 . . . . . . . . . . . . . . . . . . 19  |-  ( A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  < 
D  /\  D  ||  ( N  -  x )
) )  ->  r  =  x )  ->  (
( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
3635ralimi 2520 . . . . . . . . . . . . . . . . . 18  |-  ( A. r  e.  NN0  A. x  e.  NN0  ( ( ( r  <  D  /\  D  ||  ( N  -  r ) )  /\  ( x  <  D  /\  D  ||  ( N  -  x ) ) )  ->  r  =  x )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
3712, 36simpl2im 384 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  ->  r  =  0 ) ) )
38 r19.21v 2534 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  NN0  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N
)  ->  ( (
r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 ) )  <->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
3937, 38sylib 121 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( ( N  e.  ZZ  /\  D  e.  NN )  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) )
4039expd 256 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) ) ) )
4140pm2.43i 49 . . . . . . . . . . . . . 14  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  A. r  e.  NN0  ( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 ) ) )
42413impia 1182 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r
) )  ->  r  =  0 ) )
43 breq1 3968 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  (
r  <  D  <->  K  <  D ) )
44 oveq2 5832 . . . . . . . . . . . . . . . . 17  |-  ( r  =  K  ->  ( N  -  r )  =  ( N  -  K ) )
4544breq2d 3977 . . . . . . . . . . . . . . . 16  |-  ( r  =  K  ->  ( D  ||  ( N  -  r )  <->  D  ||  ( N  -  K )
) )
4643, 45anbi12d 465 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
( r  <  D  /\  D  ||  ( N  -  r ) )  <-> 
( K  <  D  /\  D  ||  ( N  -  K ) ) ) )
47 eqeq1 2164 . . . . . . . . . . . . . . 15  |-  ( r  =  K  ->  (
r  =  0  <->  K  =  0 ) )
4846, 47imbi12d 233 . . . . . . . . . . . . . 14  |-  ( r  =  K  ->  (
( ( r  < 
D  /\  D  ||  ( N  -  r )
)  ->  r  = 
0 )  <->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
4948rspcv 2812 . . . . . . . . . . . . 13  |-  ( K  e.  NN0  ->  ( A. r  e.  NN0  ( ( r  <  D  /\  D  ||  ( N  -  r ) )  -> 
r  =  0 )  ->  ( ( K  <  D  /\  D  ||  ( N  -  K
) )  ->  K  =  0 ) ) )
5042, 49syl5com 29 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 ) ) )
51 pm3.37 679 . . . . . . . . . . . 12  |-  ( ( ( K  <  D  /\  D  ||  ( N  -  K ) )  ->  K  =  0 )  ->  ( ( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K )
) )
5250, 51syl6 33 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  -.  K  =  0 )  ->  -.  D  ||  ( N  -  K
) ) ) )
535, 52syl7bi 164 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  (
( K  <  D  /\  K  =/=  0
)  ->  -.  D  ||  ( N  -  K
) ) ) )
5453exp4a 364 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN0  ->  ( K  <  D  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5554com23 78 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN0  ->  ( K  =/=  0  ->  -.  D  ||  ( N  -  K ) ) ) ) )
5655imp4a 347 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  (
( K  e.  NN0  /\  K  =/=  0 )  ->  -.  D  ||  ( N  -  K )
) ) )
573, 56syl7 69 . . . . . 6  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  <  D  ->  ( K  e.  NN  ->  -.  D  ||  ( N  -  K ) ) ) )
5857com23 78 . . . . 5  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  ( K  e.  NN  ->  ( K  <  D  ->  -.  D  ||  ( N  -  K ) ) ) )
5958impd 252 . . . 4  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  D  ||  N )  ->  (
( K  e.  NN  /\  K  <  D )  ->  -.  D  ||  ( N  -  K )
) )
60593expia 1187 . . 3  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( D  ||  N  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  -.  D  ||  ( N  -  K ) ) ) )
6160com23 78 . 2  |-  ( ( N  e.  ZZ  /\  D  e.  NN )  ->  ( ( K  e.  NN  /\  K  < 
D )  ->  ( D  ||  N  ->  -.  D  ||  ( N  -  K ) ) ) )
62613impia 1182 1  |-  ( ( N  e.  ZZ  /\  D  e.  NN  /\  ( K  e.  NN  /\  K  <  D ) )  -> 
( D  ||  N  ->  -.  D  ||  ( N  -  K )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    e. wcel 2128    =/= wne 2327   A.wral 2435   E.wrex 2436   E!wreu 2437   class class class wbr 3965  (class class class)co 5824   0cc0 7732    < clt 7912    - cmin 8046   NNcn 8833   NN0cn0 9090   ZZcz 9167    || cdvds 11683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-mulrcl 7831  ax-addcom 7832  ax-mulcom 7833  ax-addass 7834  ax-mulass 7835  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-1rid 7839  ax-0id 7840  ax-rnegex 7841  ax-precex 7842  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-apti 7847  ax-pre-ltadd 7848  ax-pre-mulgt0 7849  ax-pre-mulext 7850  ax-arch 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-frec 6338  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-reap 8450  df-ap 8457  df-div 8546  df-inn 8834  df-2 8892  df-n0 9091  df-z 9168  df-uz 9440  df-q 9529  df-rp 9561  df-fl 10169  df-mod 10222  df-seqfrec 10345  df-exp 10419  df-cj 10742  df-re 10743  df-im 10744  df-rsqrt 10898  df-abs 10899  df-dvds 11684
This theorem is referenced by:  ndvdsadd  11821
  Copyright terms: Public domain W3C validator