ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvbssntrcntop Unicode version

Theorem dvbssntrcntop 13293
Description: The set of differentiable points is a subset of the interior of the domain of the function. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon, 27-Jun-2023.)
Hypotheses
Ref Expression
dvcl.s  |-  ( ph  ->  S  C_  CC )
dvcl.f  |-  ( ph  ->  F : A --> CC )
dvcl.a  |-  ( ph  ->  A  C_  S )
dvbssntr.j  |-  J  =  ( Kt  S )
dvbssntr.k  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
Assertion
Ref Expression
dvbssntrcntop  |-  ( ph  ->  dom  ( S  _D  F )  C_  (
( int `  J
) `  A )
)

Proof of Theorem dvbssntrcntop
Dummy variables  x  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvcl.s . . . 4  |-  ( ph  ->  S  C_  CC )
2 dvcl.f . . . 4  |-  ( ph  ->  F : A --> CC )
3 dvcl.a . . . 4  |-  ( ph  ->  A  C_  S )
4 dvbssntr.j . . . . 5  |-  J  =  ( Kt  S )
5 dvbssntr.k . . . . 5  |-  K  =  ( MetOpen `  ( abs  o. 
-  ) )
64, 5dvfvalap 13290 . . . 4  |-  ( ( S  C_  CC  /\  F : A --> CC  /\  A  C_  S )  ->  (
( S  _D  F
)  =  U_ x  e.  ( ( int `  J
) `  A )
( { x }  X.  ( ( z  e. 
{ w  e.  A  |  w #  x }  |->  ( ( ( F `
 z )  -  ( F `  x ) )  /  ( z  -  x ) ) ) lim CC  x ) )  /\  ( S  _D  F )  C_  ( ( ( int `  J ) `  A
)  X.  CC ) ) )
71, 2, 3, 6syl3anc 1228 . . 3  |-  ( ph  ->  ( ( S  _D  F )  =  U_ x  e.  ( ( int `  J ) `  A ) ( { x }  X.  (
( z  e.  {
w  e.  A  |  w #  x }  |->  ( ( ( F `  z
)  -  ( F `
 x ) )  /  ( z  -  x ) ) ) lim
CC  x ) )  /\  ( S  _D  F )  C_  (
( ( int `  J
) `  A )  X.  CC ) ) )
8 dmss 4803 . . 3  |-  ( ( S  _D  F ) 
C_  ( ( ( int `  J ) `
 A )  X.  CC )  ->  dom  ( S  _D  F
)  C_  dom  ( ( ( int `  J
) `  A )  X.  CC ) )
97, 8simpl2im 384 . 2  |-  ( ph  ->  dom  ( S  _D  F )  C_  dom  ( ( ( int `  J ) `  A
)  X.  CC ) )
10 dmxpss 5034 . 2  |-  dom  (
( ( int `  J
) `  A )  X.  CC )  C_  (
( int `  J
) `  A )
119, 10sstrdi 3154 1  |-  ( ph  ->  dom  ( S  _D  F )  C_  (
( int `  J
) `  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343   {crab 2448    C_ wss 3116   {csn 3576   U_ciun 3866   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   dom cdm 4604    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842   CCcc 7751    - cmin 8069   # cap 8479    / cdiv 8568   abscabs 10939   ↾t crest 12556   MetOpencmopn 12625   intcnt 12733   lim CC climc 13263    _D cdv 13264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-pm 6617  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-limced 13265  df-dvap 13266
This theorem is referenced by:  dvbss  13294  dvcjbr  13312
  Copyright terms: Public domain W3C validator