ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplbda Unicode version

Theorem simplbda 384
Description: Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
Hypothesis
Ref Expression
pm3.26bda.1  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
Assertion
Ref Expression
simplbda  |-  ( (
ph  /\  ps )  ->  th )

Proof of Theorem simplbda
StepHypRef Expression
1 pm3.26bda.1 . . 3  |-  ( ph  ->  ( ps  <->  ( ch  /\ 
th ) ) )
21biimpa 296 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  /\  th ) )
32simprd 114 1  |-  ( (
ph  /\  ps )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  rhmpropd  13753  lsslmod  13879  tgcl  14243  cldopn  14286  cncnp  14409  blgt0  14581  xblss2ps  14583  xblss2  14584  mopni  14661  metrest  14685  dvcl  14862  dvcnp2cntop  14878
  Copyright terms: Public domain W3C validator