ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcl Unicode version

Theorem dvcl 14612
Description: The derivative function takes values in the complex numbers. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Hypotheses
Ref Expression
dvcl.s  |-  ( ph  ->  S  C_  CC )
dvcl.f  |-  ( ph  ->  F : A --> CC )
dvcl.a  |-  ( ph  ->  A  C_  S )
Assertion
Ref Expression
dvcl  |-  ( (
ph  /\  B ( S  _D  F ) C )  ->  C  e.  CC )

Proof of Theorem dvcl
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 14588 . 2  |-  ( ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B )  C_  CC
2 eqid 2189 . . . 4  |-  ( (
MetOpen `  ( abs  o.  -  ) )t  S )  =  ( ( MetOpen `  ( abs  o.  -  )
)t 
S )
3 eqid 2189 . . . 4  |-  ( MetOpen `  ( abs  o.  -  )
)  =  ( MetOpen `  ( abs  o.  -  )
)
4 eqid 2189 . . . 4  |-  ( z  e.  { w  e.  A  |  w #  B }  |->  ( ( ( F `  z )  -  ( F `  B ) )  / 
( z  -  B
) ) )  =  ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) )
5 dvcl.s . . . 4  |-  ( ph  ->  S  C_  CC )
6 dvcl.f . . . 4  |-  ( ph  ->  F : A --> CC )
7 dvcl.a . . . 4  |-  ( ph  ->  A  C_  S )
82, 3, 4, 5, 6, 7eldvap 14611 . . 3  |-  ( ph  ->  ( B ( S  _D  F ) C  <-> 
( B  e.  ( ( int `  (
( MetOpen `  ( abs  o. 
-  ) )t  S ) ) `  A )  /\  C  e.  ( ( z  e.  {
w  e.  A  |  w #  B }  |->  ( ( ( F `  z
)  -  ( F `
 B ) )  /  ( z  -  B ) ) ) lim
CC  B ) ) ) )
98simplbda 384 . 2  |-  ( (
ph  /\  B ( S  _D  F ) C )  ->  C  e.  ( ( z  e. 
{ w  e.  A  |  w #  B }  |->  ( ( ( F `
 z )  -  ( F `  B ) )  /  ( z  -  B ) ) ) lim CC  B ) )
101, 9sselid 3168 1  |-  ( (
ph  /\  B ( S  _D  F ) C )  ->  C  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   {crab 2472    C_ wss 3144   class class class wbr 4018    |-> cmpt 4079    o. ccom 4648   -->wf 5231   ` cfv 5235  (class class class)co 5896   CCcc 7839    - cmin 8158   # cap 8568    / cdiv 8659   abscabs 11038   ↾t crest 12744   MetOpencmopn 13854   intcnt 14053   lim CC climc 14583    _D cdv 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-mulrcl 7940  ax-addcom 7941  ax-mulcom 7942  ax-addass 7943  ax-mulass 7944  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-1rid 7948  ax-0id 7949  ax-rnegex 7950  ax-precex 7951  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-apti 7956  ax-pre-ltadd 7957  ax-pre-mulgt0 7958  ax-pre-mulext 7959  ax-arch 7960  ax-caucvg 7961
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-recs 6330  df-frec 6416  df-map 6676  df-pm 6677  df-sup 7013  df-inf 7014  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-reap 8562  df-ap 8569  df-div 8660  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-n0 9207  df-z 9284  df-uz 9559  df-q 9650  df-rp 9684  df-xneg 9802  df-xadd 9803  df-seqfrec 10477  df-exp 10551  df-cj 10883  df-re 10884  df-im 10885  df-rsqrt 11039  df-abs 11040  df-rest 12746  df-topgen 12765  df-psmet 13856  df-xmet 13857  df-met 13858  df-bl 13859  df-mopn 13860  df-top 13958  df-topon 13971  df-bases 14003  df-ntr 14056  df-limced 14585  df-dvap 14586
This theorem is referenced by:  dvfgg  14617  dvcnp2cntop  14623  dvaddxxbr  14625  dvmulxxbr  14626  dvcoapbr  14631
  Copyright terms: Public domain W3C validator