ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cldopn Unicode version

Theorem cldopn 13176
Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006.) (Revised by Stefan O'Rear, 22-Feb-2015.)
Hypothesis
Ref Expression
iscld.1  |-  X  = 
U. J
Assertion
Ref Expression
cldopn  |-  ( S  e.  ( Clsd `  J
)  ->  ( X  \  S )  e.  J
)

Proof of Theorem cldopn
StepHypRef Expression
1 cldrcl 13171 . 2  |-  ( S  e.  ( Clsd `  J
)  ->  J  e.  Top )
2 iscld.1 . . . 4  |-  X  = 
U. J
32iscld 13172 . . 3  |-  ( J  e.  Top  ->  ( S  e.  ( Clsd `  J )  <->  ( S  C_  X  /\  ( X 
\  S )  e.  J ) ) )
43simplbda 384 . 2  |-  ( ( J  e.  Top  /\  S  e.  ( Clsd `  J ) )  -> 
( X  \  S
)  e.  J )
51, 4mpancom 422 1  |-  ( S  e.  ( Clsd `  J
)  ->  ( X  \  S )  e.  J
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146    \ cdif 3124    C_ wss 3127   U.cuni 3805   ` cfv 5208   Topctop 13064   Clsdccld 13161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fn 5211  df-fv 5216  df-top 13065  df-cld 13164
This theorem is referenced by:  difopn  13177  uncld  13182  cnclima  13292
  Copyright terms: Public domain W3C validator