ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr1 Unicode version

Theorem simplr1 1024
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ph )

Proof of Theorem simplr1
StepHypRef Expression
1 simpr1 988 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
21adantr 274 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  prarloclemlt  7407  prarloclemlo  7408  summodclem2  11272  restopnb  12552  blsscls2  12864
  Copyright terms: Public domain W3C validator