ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simplr1 Unicode version

Theorem simplr1 1063
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simplr1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ph )

Proof of Theorem simplr1
StepHypRef Expression
1 simpr1 1027 . 2  |-  ( ( th  /\  ( ph  /\ 
ps  /\  ch )
)  ->  ph )
21adantr 276 1  |-  ( ( ( th  /\  ( ph  /\  ps  /\  ch ) )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  netap  7436  prarloclemlt  7676  prarloclemlo  7677  ccatswrd  11197  summodclem2  11888  pcdvdstr  12845  prdssgrpd  13443  prdsmndd  13476  grprcan  13565  lmodprop2d  14306  lssintclm  14342  psrbaglesuppg  14630  restopnb  14849  blsscls2  15161
  Copyright terms: Public domain W3C validator